
TeachTeach
YourselfYourself C++C++

Herbert Schildt
Herbert Schildt

TEACH YOURSELF
C++

About the Author...

Herbert Schildt is the world’s leading programming
author. He is an authority on the C and C++

languages, a master Windows programmer, and an
expert on Java. His programming books have sold

nearly two million copies worldwide and have
been translated into all major foreign languages.

He is the author of numerous best-sellers,
including C: The Complete Reference, C++: The
Complete Reference, C++ from the Ground Up,

Expert C++, MFC Programming from the Ground Up,
Windows 95 Programming in C and C++, Windows
NT 4 Programming from the Ground Up, and many

others. Schildt is the president of Universal
Computing Laboratories, a software consulting firm
in Mahomet, Illinois. He is also a member of both
the ANSI C and C++ standardization committees.

He holds a master’s degree in computer science
from the University of Illionois.

2

Contents

Acknowledgments . i

Introduction . ii

For Further Study . iv

1 An Overview of C++ 1

1.1 WHAT IS OBJECT-ORIENTED PROGRAMMING? 2

1.2 TWO VERSIONS OF C++ . 5

1.3 C++ CONSOLE I/O . 8

1.4 C++ COMMENTS . 12

1.5 CLASSES: A FIRST LOOK . 13

1.6 SOME DIFFERENCES BETWEEN C AND C++ 19

1.7 INTRODUCING FUNCTION OVERLOADING 22

1.8 C++ KEYWORDS . 26

SKILLS CHECK . 26

2 Introducing Classes 29

2.1 CONSTRUCTOR AND DESTRUCTOR FUNCTIONS 30

2.2 CONSTRUCTORS THAT TAKE PARAMETERS 37

2.3 INTRODUCING INHERITANCE . 42

2.4 OBJECT POINTERS . 48

2.5 CLASSES, STRUCTURES, AND UNIONS ARE RELATED 49

2.6 IN-LINE FUNCTIONS . 55

2.7 AUTOMATIC IN-LINING . 58

SKILLS CHECK . 61

3 A Closer Look at Classes 63

3.1 ASSIGNING OBJECTS . 64

3.2 PASSING OBJECTS TO FUNCTIONS . 70

3.3 RETURNING OBJECTS FROM FUNCTIONS 75

3.4 AN INTRODUCTION TO FRIEND FUNCTIONS 78

SKILLS CHECK . 84

3

TEACH YOURSELF
C++

4 Arrays, Pointers, and References 87

4.1 ARRAYS OF OBJECTS . 89

4.2 USING POINTERS TO OBJECTS . 93

4.3 THE this POINTER . 94

4.4 USING new AND delete . 97

4.5 MORE ABOUT new AND delete . 100

4.6 REFERENCES . 105

4.7 PASSING REFERENCES TO OBJECTS . 109

4.8 RETURNING REFERENCES . 112

4.9 INDEPENDENT REFERENCES AND RESTRICTIONS 115

SKILLS CHECK . 116

5 Function Overloading 119

5.1 OVERLOADING CONSTRUCTOR FUNCTIONS 120

5.2 CREATING AND USING A COPY CONSTRUCTOR 125

5.3 THE OVERLOAD ANACHRONISM . 133

5.4 USING DEFAULT ARGUMENTS . 133

5.5 OVERLOADING AND AMBIGUITY . 139

5.6 FINDING THE ADDRESS OF AN OVERLOADED FUNCTION 142

SKILLS CHECK . 143

6 Introducing Operator Overloading 147

6.1 THE BASICS OF OPERATOR OVERLOADING 148

6.2 OVERLOADING BINARY OPERATORS . 150

6.3 OVERLOADING THE RELATIONAL AND LOGICAL OPERATORS 155

6.4 OVERLOADING A UNARY OPERATOR . 157

6.5 USING FRIEND OPERATOR FUNCTIONS 160

6.6 A CLOSER LOOK AT THE ASSIGNMENT OPERATOR 163

6.7 OVERLOADING THE [] SUBSCRIPT OPERATOR 166

SKILLS CHECK . 170

7 Inheritance 173

7.1 BASE CLASS ACCESS CONTROL . 176

7.2 USING PROTECTED MEMBERS . 180

7.3 CONSTRUCTORS, DESTRUCTORS, AND INHERITANCE 183

7.4 MULTIPLE INHERITANCE . 190

7.5 VIRTUAL BASE CLASSES . 196

SKILLS CHECK . 198

8 Introducing the C++ I/O System 205

8.1 SOME C++ I/O BASICS . 208

8.2 FORMATTED I/O . 209

8.3 USING width(), precision(), AND fill() . 216

8.4 USING I/O MANIPULATORS . 219

8.5 CREATING YOUR OWN INSERTERS . 222

8.6 CREATING EXTRACTORS . 228

4

SKILLS CHECK . 230

9 Advanced C++ I/O 233

9.1 CREATING YOUR OWN MANIPULATORS 234

9.2 FILE I/O BASICS . 237

9.3 UNFORMATTED, BINARY I/O . 243

9.4 MORE UNFORMATTED I/O FUNCTIONS 247

9.5 RANDOM ACCESS . 251

9.6 CHECKING THE I/O STATUS . 253

9.7 CUSTOMIZED I/O AND FILES . 256

SKILLS CHECK . 258

10 Virtual Functions 261

10.1 POINTERS TO DERIVED CLASSES . 262

10.2 INTRODUCTION TO VIRTUAL FUNCTIONS 264

10.3 MORE ABOUT VIRTUAL FUNCTIONS . 271

10.4 APPLYING POLYMORPHISM . 274

SKILLS CHECK . 279

11 Templates and Exception Handling 281

11.1 GENERIC FUNCTIONS . 282

11.2 GENERIC CLASSES . 287

11.3 EXCEPTION HANDLING . 292

11.4 MORE ABOUT EXCEPTION HANDLING . 299

11.5 HANDLING EXCEPTIONS THROWN BY new 304

SKILLS CHECK . 307

12 Run-Time Type Identification and the Casting Operators 309

12.1 UNDERSTANDING RUN-TIME TYPE IDENTIFICATION (RTTI) 310

12.2 USING dynamic cast . 320

12.3 USING const cast, reinterpret cast, AND static cast 328

SKILLS CHECK . 330

13 Namespaces, Conversion Functions, and Miscellaneous Topics 333

13.1 NAMESPACES . 334

13.2 CREATING A CONVERSION FUNCTION . 342

13.3 STATIC CLASS MEMBERS . 344

13.4 const MEMBER FUNCTIONS AND mutable 349

13.5 A FINAL LOOK AT CONSTRUCTORS . 352

13.6 USING LINKAGE SPECIFIERS AND THE asm KEYWORD 355

13.7 ARRAY-BASED I/O . 357

SKILLS CHECK . 360

14 Introducing the Standard Template Library 363

14.1 AN OVERVIEW OF THE STANDARD TEMPLATE LIBRARY 365

14.2 THE CONTAINER CLASSES . 367

14.3 VECTORS . 368

5

TEACH YOURSELF
C++

14.4 LISTS . 375

14.5 MAPS . 385

14.6 ALGORITHMS . 390

14.7 THE STRING CLASS . 397

SKILLS CHECK . 404

A A Few More Differences Between C and C++ 407

B Answers 409

1.3 EXERCISES . 410

1.4 EXERCISES . 411

1.5 EXERCISES . 411

1.6 EXERCISES . 413

1.7 EXERCISES . 413

MASTERY SKILLS CHECK: Chapter 1 . 416

REVIEW SKILLS CHECK: Chapter 2 . 418

2.1 EXERCISES . 420

2.2 EXERCISES . 423

2.3 EXERCISE . 426

2.5 EXERCISES . 427

2.6 EXERCISES . 429

2.7 EXERCISES . 430

MASTERY SKILLS CHECK: Chapter 2 . 432

CUMULATIVE SKILLS CHECK: Chapter 2 . 434

REVIEW SKILLS CHECK: Chapter 3 . 436

3.1 EXERCISES . 436

3.2 EXERCISES . 438

3.3 EXERCISES . 440

3.4 EXERCISES . 440

MASTERY SKILLS CHECK: Chapter 3 . 442

CUMULATIVE SKILLS CHECK: Chapter 3 . 444

REVIEW SKILLS CHECK: Chapter 4 . 448

4.1 EXERCISES . 450

4.2 EXERCISES . 452

4.3 EXERCISE . 453

4.4 EXERCISES . 454

4.5 EXERCISES . 456

4.6 EXERCISES . 456

4.7 EXERCISE . 457

4.8 EXERCISES . 458

MASTERY SKILLS CHECK: Chapter 4 . 459

CUMULATIVE SKILLS CHECK: Chapter 4 . 462

REVIEW SKILLS CHECK: Chapter 5 . 463

5.1 EXERCISES . 465

5.2 EXERCISES . 467

6

5.4 EXERCISES . 469

5.6 EXERCISE . 470

MASTERY SKILLS CHECK: Chapter 5 . 471

CUMULATIVE SKILLS CHECK: Chapter 5 . 473

REVIEW SKILLS CHECK: Chapter 6 . 475

6.2 EXERCISES . 475

6.3 EXERCISE . 476

6.4 EXERCISES . 477

6.5 EXERCISES . 479

6.6 EXERCISE . 482

6.7 EXERCISES . 484

MASTERY SKILLS CHECK: Chapter 6 . 488

CUMULATIVE SKILLS CHECK: Chapter 6 . 495

REVIEW SKILLS CHECK: Chapter 7 . 496

7.1 EXERCISES . 502

7.2 EXERCISES . 502

7.3 EXERCISES . 502

7.4 EXERCISES . 504

7.5 EXERCISES . 505

MASTERY SKILLS CHECK: Chapter 7 . 505

CUMULATIVE SKILLS CHECK: Chapter 7 . 507

REVIEW SKILLS CHECK: Chapter 8 . 508

8.2 EXERCISES . 510

8.3 EXERCISES . 511

8.5 EXERCISES . 513

8.6 EXERCISES . 515

MASTERY SKILLS CHECK: Chapter 8 . 517

CUMULATIVE SKILLS CHECK: Chapter 8 . 521

REVIEW SKILLS CHECK: Chapter 9 . 524

9.1 EXERCISES . 525

9.2 EXERCISES . 527

9.3 EXERCISES . 530

9.4 EXERCISES . 533

9.5 EXERCISES . 534

9.6 EXERCISES . 535

MASTERY SKILLS CHECK: Chapter 9 . 538

CUMULATIVE SKILLS CHECK: Chapter 9 . 543

REVIEW SKILLS CHECK: Chapter 10 . 545

10.2 EXERCISES . 547

10.3 EXERCISES . 549

10.4 EXERCISES . 549

MASTERY SKILLS CHECK: Chapter 10 . 554

CUMULATIVE SKILLS CHECK: Chapter 10 . 554

REVIEW SKILLS CHECK: Chapter 11 . 557

7

TEACH YOURSELF
C++

11.1 EXERCISES . 558

11.2 EXERCISES . 559

11.3 EXERCISES . 561

11.4 EXERCISES . 561

11.5 EXERCISES . 562

MASTERY SKILLS CHECK: Chapter 11 . 562

REVIEW SKILLS CHECK: Chapter 12 . 569

12.1 EXERCISES . 570

12.2 EXERCISES . 571

12.3 EXERCISES . 572

MASTERY SKILLS CHECK: Chapter 12 . 572

CUMULATIVE SKILLS CHECK: Chapter 12 . 574

REVIEW SKILLS CHECK: Chapter 13 . 575

13.1 EXERCISES . 575

13.2 EXERCISES . 577

13.3 EXERCISES . 578

13.4 EXERCISES . 580

13.5 EXERCISES . 581

13.7 EXERCISES . 582

MASTERY SKILLS CHECK: Chapter 13 . 583

CUMULATIVE SKILLS CHECK: Chapter 13 . 584

REVIEW SKILLS CHECK: Chapter 14 . 584

14.1 EXERCISES . 584

14.3 EXERCISES . 585

14.4 EXERCISES . 585

14.5 EXERCISES . 588

14.6 EXERCISES . 589

14.7 EXERCISES . 591

MASTERY SKILLS CHECK: Chapter 14 . 593

8

Acknowledgments

I wish to say special thanks to

Bjarne Stroustrup

Steve Clamage

P. J. Plauger

Al Stevens

for sharing their knowledge, advice, and expertise during the preparation of this book. It was
much appreciated.

i

TEACH YOURSELF
C++

Introduction

If you already know C and are moving up to C++, this book is for you. C++ is the C pro-
grammer’s answer to Object-Oriented Programming (OOP). Built upon the solid foundation
of C, C++ adds support for power, elegance, or flexibility. C++ has become the universal
language of programmers around the world and is the language that will create the next gener-
ation of high-performance software. It is the single most important language that a professional
programmer must know.

C++ was invented in 1979 by Bjarne Stroustrup at Bell Laboratories in Murray Hill, New Jersey.
Initially it was called ”C with classes.” The name was changed to C++ in 1983. Since then,
C++ has undergone three major revisions, the first in 1985 and the second in 1990. The third
occurred during the C++ standardization process. Several years ago, work began on a standard
for C++. Towards that end, a joint ANSI (American National Standards Institute) and ISO
(International Standards Organization) standardization committee was formed. The first draft
of the proposed standard was created on January 25, 1994. In that draft, the ANSI/ISO C++
committee (of which I am a member) kept the features first defined by Stroustrup and added
some new ones as well. But, in general, this initial draft reflected the state of C++ at the time.

Soon after the completion of the first draft of the standard an event occurred that caused the
standard to be greatly expanded: the creation of the Standard Template Library (STL) by
Alexander Stepanov. As you will learn, the STL is a set of generic routines that you can use to
manipulate data. It is both powerful and elegant. But it is also quite large. Subsequent to the
first draft, the committee voted to include the STL in the specification for C++. The addition
of the STL expanded the scope of C++ well beyond its original definition. While important,
the inclusion of the STL, among other things, slowed the standardization of C++.

It is fair to say that the standardization of C++ took far longer than any one had expected
when it began. However, it is now nearly complete. The final draft has been prepared and
passed out of committee. It now awaits only formal approval. In a practical sense, a standard
for C++ is now a reality. Compilers already are beginning to support all of the new features.

The material in this book describes Standard C++. This is the version of C++ created by
the ANSI/ISO standardization committee and it is one that is currently accepted by all major
compilers. Therefore, using this book, you can be confident that what you learn today will also
apply tomorrow.

What is New In the Third Edition

This is the third edition of Teach Yourself C++. It includes all of the material contained in the
first two editions and adds two new chapters and many new topics. The first new chapter covers
Run-Time Type ID (RTTI) and the new casting operators. The second covers the Standard
Template Library (STL). Both of these topics are major features added to the C++ language
since the previous edition was published. New topics include namespaces, the new-style headers
and coverage of the modern-style I/O system. In all, the third edition of Teach Yourself C++
is substantially larger than its preceding two editions.

If You’re Using Windows

If your computer uses Windows and your goal is to write Windows-based programs, then you
have chosen the right language to learn. C++ is completely at home with Windows program-
ming. However, they are console-based programs. The reason for this is easy to understand:
Windows programs are, by their nature, large and complex. The overhead required to create
even a minimal Windows skeletal program is 50 to 70 lines of code. To write Windows programs
that demonstrate the features of C++ would require hundreds of lines of code each. Put simply,

ii

https://en.wikipedia.org/wiki/Bjarne_Stroustrup
https://www.ansi.org/
https://www.iso.org/
https://en.wikipedia.org/wiki/Alexander_Stepanov

Windows is not an appropriate environment in which to learn programming. However, you can
still use a Windows-based compiler to compile he programs in this book because the compiler
to compile the programs in this book because the compiler will automatically create a console
session in which to execute your program.
Once you have mastered C++, you will be able to apply your knowledge to Windows program-
ming. In fact, Windows programming using C++ allows the use of class libraries such as MFC,
that can greatly simplify the development of a Windows program.

How This Book Is Organized

This book is unique because it teaches you the C++ language by applying mastery learning. It
presents one idea at a time, followed by numerous examples and exercises to help you master
each topic. This approach ensures that you fully understand each topic before moving on/
The material is presented sequentially. Therefore, be sure to work carefully through the chap-
ters. Each one assumes that you know the material presented in all preceding chapters. At
the start of every chapter (except Chapter 1) there is a Review Skills Check that tests your
knowledge of the preceding chapter. At the end of each chapter you will find a Mastery Skills
Check that checks your knowledge of the material present in the chapter. Finally, each chapter
concludes with a Cumulative Skills Check which tests how well you are integrating new material
with that presented in earlier chapters. The answers to the book’s many exercises are found in
Appendix B.
This book assumes that you are already an accomplished C programmer. Put simply, you can’t
learn program in C++ until you can program in C. If you can’t program in C, take some time
to learn it before attempting to use this book. A good way to learn C is to read my book
Teach Yourself C, Third Edition (Osborne/McGraw-Hill, Berkeley CA, 1997). It uses the same
presentation style as this book.

iii

TEACH YOURSELF
C++

For Further Study

Teach Yourself C++, Third Edition is your gateway into the ”Herb Schildt” series of program-
ming books. Here is a partial list of Schildt’s other books.
If you want to learn more about C++, then you will find these books especially helpful.

C++: The complete Reference

C++ From the Ground Up

Expert C++

If you want to learn more about C, the foundation of C++,we recommend

Teach Yourself C

C: The Complete Reference

The Annotated ANSI C Standard

If you will be developing programs for the Web, you will want to read

Java: The Complete Reference

co-authored by Herbert Schildt and Patrick Naughton.
Finally, if you want to program for Windows, we recommend

Schildt’s Windows 95 Programming in C and C++

Schildt’s Advanced Windows 95 Programming in C and C++

Windows NT 4 From the Ground Up

MFC Programming From the Ground Up

When you need solid answers, fast, turn to

Herbert Schildt,
the recognized authority on programming.

iv

1
An Overview of C++

Chapter Objectives

1.1 What is Object-Oriented Programming

1.2 Two versions of C++

1.3 C++ console I/O

1.4 C++ comments

1.5 Classes: A first look

1.6 Some differences between C and C++

1.7 Introducing function overloading

1.8 C++ keywords

1

TEACH YOURSELF
C++

C++ is an enhanced version of the C language. C++ includes everything that is part of
C and adds support for object-oriented programming (OOP for short). In addition, C++

contains many improvements and features that simply make it a ”better C,” independent of
object-oriented programming. With very few, very minor exceptions, C++ is a superset of C.
While everything that you know about the C language is fully applicable to C++, understanding
its enhanced features will still require a significant investment of time and effort on your part.
However, the rewards of programming in C++ will more than justify the effort you put forth.

The purpose of this chapter is to introduce you to several of the most important features of
C++. As you know, the elements of a computer language do not exist in a void, separate from
one another. Instead, they work together to form the complete language. This interrelatedness
is especially pronounced in C++. In fact, it is difficult to discuss one aspect of C++ in isolation
because the features of C++ are highly integrated. To help overcome this problem, this chapter
provides a brief overview of several C++ features. This overview will enable you to understand
the examples discussed later in this book. Keep in mind that most topics will be more thoroughly
explored in later chapters.

Since C++ was invented to support object-oriented programming, this chapter begins with a
description of OOP. As you will see, many features of C++ are related to OOP in one way or
another. In fact, the theory of OOP permeates C++. However, it is important to understand
that C++ can be used to write programs that are and are not object oriented. How you use
C++ is completely up to you.

At the time of this writing, the standardization of C++ is being finalized. For this reason,
this chapter describes some important differences between versions of C++ that have been in
common use during the past several years and the new Standard C++. Since this books teaches
Standard C++, this material is especially important if you are using an older compiler.

In addition to introducing several important C++ features, this chapter also discusses some
differences between C and C++ programming styles. There are several aspects of C++ that
allow greater flexibility in the way that you write programs. While some of these features
have little or nothing to do with object-oriented programming, they are found in most C++
programs, so it is appropriate to discuss them early in this book.

Before you begin, a few general comments about the nature and form of C++ are in order.
First, for the most part, C++ programs physically look like C programs. Like a C program,
a C++ program begins execution at main(). To include command-line arguments, C++ uses
the same argc, argv convention that C uses. Although C++ defines its own, object-oriented
library, it also supports all the functions in the C standard library. C++ uses the same control
structures as C. C++ includes all of the built-in data types defined by C.

This book assumes that you already know the C programming language. In other words, you
must be able to program in C before you can learn to program in C++ by using this book. If
you don;t know C, a good starting place is my book Teach Yourself C, Third Edition (Berkeley:
Osborne/McGraw-Hill, 1997). It applies the same systematic approach used in this book and
thoroughly covers the entire C language.

Note: This book assumes that you know how to compile and execute a program using your
C++ compiler. If you don’t, you will need to refer to your compiler’s instructions. (Because of
the differences between compilers, it is impossible to give compilation instructions for each in
this book.) Since programming is beast learned by doing, you are strongly urged to enter, compile
and run the examples in the book in the order in which they are presented.

1.1 WHAT IS OBJECT-ORIENTED PROGRAMMING?

Object-oriented programming is a powerful way to approach the task of programming. Since its
early beginnings, programming has been governed by various methodologies. At each critical
point in the evolution of programming, a new approach was created to help the programmer

2

AN OVERVIEW OF C++
1.1. WHAT IS OBJECT-ORIENTED PROGRAMMING?

handle increasingly complex programs. The first programs were created by toggling switches
on the front panel of the computer. Obviously, this approach is suitable for only the smallest
programs. Next, assembly language was invented, which allowed longer programs to be writ-
ten. The next advance happened in the 1950s when first high-level language (FORTRAN) was
invented.
By using a high-level language, a programmer was able to write programs that were several
thousand lines long. However, the method of programming used early on was an ad hoc,
anything-goes approach. While this is fine for relatively short programs, it yields unreadable
(and unmanageable) ”spaghetti code” when applied to larger programs. The elimination of
spaghetti code became feasible with the invention of structured programming languages in the
1960s. These languages include Algol and Pascal. In loose terms, C is a structured language,
and most likely the type of programming you have been doing would be called structured
programming. structured programming relies on well-defined control structures, code blocks,
the absence (or at least minimal use) of the GOTO, and stand-alone subroutines that support
recursion and local variables. The essence of structured programming is the reduction of a
program into its constituent elements. Using structured programming, the average programmer
can create and maintain programs that are up to 50,000 lines long.
Although structured programming has yielded excellent results when applied to moderately
complex programs, even it fails at some point, after a program reaches a certain size. To allow
more complex programs to be written, a new approach to the job of programming was needed.
Towards this end, object-oriented programming was invented. OOP takes the best of the ideas
embodied in structured programming and combines them with powerful new concepts that allow
you to organize your programs more effectively. Object-oriented programming encourages you
to decompose a problem into its constituent parts. Each component becomes a self-contained
object that contains its own instructions and data that relate to that object. In this way,
complexity is reduced and the programmer can manage larger programs.
All OOP languages, including C++, share three common defining traits: encapsulation, poly-
morphism, and inheritance. Let’s look at these concepts now.

ENCAPSULATION

Encapsulation is the mechanism that binds together code and the data it manipulates,
and keeps both safe from outside interference and misuse. In an object-oriented language,
code and data can be combined in such a way that a self-contained ”black box” is created.
When code and data are linked together in this fashion, an object is created. In other
words, an object is the device that supports encapsulation.

Within an object, code, data, or both may be private to that object or public. Private
code or data is known to and accessible only by another part of the object. That is, private
code or data cannot be accessed by a piece of the program that exists outside the object.
When code or data is public, other parts of your program can access it even though it is
defined within an object. Typically, the public parts of an object are used to provide a
controlled interface to the private elements of the object.

For all intents and purposes, an object is a variable of a user-defined type. It may seem
strange that an object that links both code and data can be thought of as a variable.
However, in object-oriented programming, this is precisely the case. Each time you define
a new type of object, you are creating a new data type. Each specific instance of this data
type is a compound variable.

POLYMORPHISM

Polymorphism (from the Greek, meaning ”many forms”) is the quality that allows one
name to be used for two or more related but technically different purposes. As it relates
to OOP, polymorphism allows one name to specify a general class of actions. Within a

3

TEACH YOURSELF
C++

general class of actions, the specific action to be applied is determined by the type of data.
For example, in C, which does not significantly support polymorphism, the absolute value
action requires three distinct function names: abs(), labs(), and fabs(). These functions
compute and return the absolute value of an integer, a long integer, and a floating-point
value, respectively. However, in C++, which supports polymorphism, each function can
be called by the same name, such as abs(). (One way this can be accomplished is shown
later in this chapter.) The type of data used to call the function determines which specific
version of the function is actually executed. As you will see, in C++, it is possible to use
one function name for many different purposes. This is called function overloading.

More generally, the concept of polymorphism is characterized by the idea of ”one interface,
multiple methods,” which means using a generic interface for a group of related activities.
The advantage of polymorphism is that it helps to reduce complexity by allowing one
interface to specify a general class of action. It is the compiler’s job to select the specific
action as it applies to each situation. You, the programmer, don’t need to do this selection
manually. You need only remember and utilize the general interface. As the example in
the preceding paragraph illustrates, having three names for the absolute value function
instead of just one makes the general activity of obtaining the absolute value of a number
more complex than it actually is.

Polymorphism can be applied to operators, too. Virtually all programming languages
contain a limited application of polymorphism as it relates to the arithmetic operators.
For example, in C, the + sign is used to add integers, long integers, characters, and
floating-point values. In these cases, the compiler automatically knows which type of
arithmetic to apply. In C++, you can extend this concept to other types of data that you
define. This type of polymorphism is called operator overloading.

The key point to remember about polymorphism is that it allows you to handle greater
complexity by allowing the creation of standard interfaces to related activities.

INHERITANCE

Inheritance is the process by which one object can acquire the properties of another.
More specifically, an object can inherit a general set of properties to which it can add
those features that are specific only to itself. Inheritance is important because it allows
an object to support the concept of hierarchical classification. Most information is made
manageable by hierarchical classification. For example, think about the description of a
house. A house is apart of the general class called building. In turn, building is part of
the more general class structure, which is part of the even more general class of objects
that we call man-made. In each case, the child class inherits all those qualities associated
with the parent and adds to them its own defining characteristics. Without the use of
ordered classifications, each object would have to define all characteristics that relate to
it explicitly. However, through inheritance, it is possible to describe an object by stating
what general class (or classes) it belongs to along with those specific traits that make it
unique. As you will see, inheritance plays a very important role in OOP.

EXAMPLES

1. Encapsulation is not entirely new to OOP. To a degree, encapsulation can be achieved
when using the C language. For example, when you use a library function, you are, in
effect, using a black-box routine, the internals of which you cannot alter or affect (except,
perhaps, through malicious actions). Consider the fopen() function. When it is used to
open a file, several internal variables are created and initialized. As far as your program is
concerned, these variables are hidden and not accessible. However, C++ provides a much
more secure approach to encapsulation.

4

AN OVERVIEW OF C++
1.2. TWO VERSIONS OF C++

2. In the real world, examples of polymorphism are quite common. For example, consider the
steering wheel on your car. It works the same whether your car uses power steering, rack-
and-pinion steering, or standard, manual steering. The point is that the interface (the
steering wheel) is the same no matter what type of actual steering mechanism (method)
is used.

3. Inheritance of properties and the more general concept of classification are fundamental
to the way of knowledge is organized. For example, celery is a member of the vegetable
class, which is part of the plant class. In turn, plants are living organisms, and so forth.
Without hierarchical classification, systems of knowledge would not be possible.

EXERCISE

1. Think about the way that classification and polymorphism play an important role in our
day-to-day lives.

1.2 TWO VERSIONS OF C++

At the time of this writing, C++ is in the midst of a transformation. As explained in the
preface to this book, C++ has been undergoing the process of standardization for the past
several years. The goal has been to create a stable, standardized, feature-rich language that
will suit the needs of programmers well into the next century. As a result, there are really two
versions of C++. The first is the traditional version that is based upon Bjarne Stroustrup’s
original designs. This is the version of C++ that has been used by programmers for the past
decade. The second is the new Standard C++, which was created by Stroustrup and the
ANSI/ISO standardization committee. While these two versions of C++ are very similar at
their core, Standard C++ contains several enhancements not found in traditional C++. Thus,
Standard C++ is essentially a superset of traditional C++.

This book teaches Standard C++. This is the version of C++ defined by the ANSI/ISO
standardization committee, and it is the version implemented by all modern C++ compilers.
The code in this book reflects the contemporary coding style and practices as encouraged by
Standard C++. This means that what you learn in this book will be applicable today as well as
tomorrow. Put directly, Standard C++ is the future. And, since Standard C++ encompasses
all features found in earlier versions of C++, what you learn in this book will enable you to
work in all C++ programming environments.

However, if you are using an older compiler, it might not accept all of the programs in this book.
Here’s why: During the process of standardization, the ANSI/ISO committee added any new
features to the language. As these features were defined, they were implemented by compiler
developers. Of course, there is always a lag time between the addition of a new feature to the
language and the availability of the feature in commercial compilers. Since features were added
to C++ over a period of years, an older compiler might not support one or more of them.
This is important because two recent additions to the C++ language affect every program that
you will write-even the simplest. If you are using an older compiler that does not accept these
new features, don’t worry. There is an easy workaround, which is described in the following
paragraphs.

The differences between old-style and modern code involve two new features: new-style headers
and the namespace statement. To demonstrate these differences we will begin by looking at
two versions of a minimal, do-nothing C++ program. The first version, shown here, reflects the
way C++ programs were written until recently. (That is, it uses old-style coding.)

/*

A traditional -style C++ program.

5

TEACH YOURSELF
C++

*/

#include <iostream.h>

int main()

{

/* program code */

return 0;

}

Since C++ is build on C, this skeleton should be largely familiar, but pay special attention to
the #include statement. This statement includes the file iostream.h, which provides support
for C++’s I/O system. (It is to C++ what stdio.h is to C.)

Here is the second version of the skeleton, which uses the modern style:

/*

A modern -style C++ program that uses

the new -style headers and a namespace.

*/

#include <iostream >

using namespace std;

int main()

{

/* program code */

return 0;

}

Notice the two lines in this program immediately after the first comment; this is where the
changes occur. First, in the #include statement, there is no .h after the name iostream. And
second, the next line, specifying a namespaces will be examined in detail later in this book, a
brief overview is in order now.

THE NEW C++ HEADERS

As you know from your C programming experience, when you use a library function in a
program, you must include its header file. This is done using the #include statement. For
example, in C, to include the header file for the I/O functions, you include stdio.h with a
statement like this:

#include <stdio.h>

Here stdio.h is the name of the file used by the I/O functions, and the preceding statement
cause that file to be included in your program. The key point is that the #include statement
includes a file.

When C++ was first invented and for several years after that, it used the same style of headers
as did C. In fact, Standard C++ still supports C-style headers for header files that you create
and for backward compatibility. However, Standard C++ has introduced a new kind of header
that is used by the Standard C++ library. The new-style headers do not specify filenames.
Instead, they simply specify standard identifiers that might be mapped o files by the compiler,
but they need not be. The new-style C++ headers are abstractions that simply guarantee that
the appropriate prototypes and definitions required by the C++ library have been declared.

Since the new-style header is not a filename, it does not have a .h extension. Such a header
consists solely of the header name contained between angle brackets. For example, here are
some of the new-style headers supported by Standard C++:

6

AN OVERVIEW OF C++
1.2. TWO VERSIONS OF C++

iostream>

<fstream>

<vector>

<string>

The new-style headers are included using the #include statement. The only difference is that
the new-style headers do not necessarily represent filenames.

Because C++ includes the entire C function library, it still supports the standard C-style header
files associated with that library. That is, header files such as stdio.h and ctype.h are still
available. However, Standard C++ also defines new-style headers that you can use in place of
these header files. The C++ versions of the standard C headers simply add a c prefix to the
filename and drop the .h. For example, the new style C++ header for math.h is <cmath>,
and the one for string.h is <cstring>. Although it is currently permissible to include a C-
style header file when using C library functions, this approach is deprecated by Standard C++.
(That is, it is not recommended.) For this reason, this book will use new-style C++ headers in
all #include statements. If your compiler does not support new-style headers the C function
library, simply substitute the old-style, C-like headers.

Since the new-style header is a recent addition to C++, you will still find many, many older
programs that don’t use it. These programs instead use C-style headers, in which a filename
is specified. As the old-style skeletal program shows, the traditional way to include the I/O
header is as shown here:

#include <iostream.h>

This causes the file iostream.h to be included in your program. In general, an old-style header
will use the same name as its corresponding new-style header with a .h appended.

As of this writing, all C++ compilers support the old-style headers. However, the old style
headers have been declared obsolete, and their use in new programs is not recommended. This
is why they are not used in this book.

Remember: While still common in existing C++ code, old-style headers are obsolete.

NAMESPACES

When you include a new-style header in your program the contents of that header are contained
in the std namespace. A namespace is simply a declarative region. The purpose of a namespace
is to localize the names of identifiers to avoid name collisions. Traditionally, the names of library
functions and other such items were simply placed into the global namespace (as they are in
C). However, the contents of new-style headers are placed in the std namespace. We will look
closely at namespaces later in this book. For now, you don’t need to worry about them because
you can use the statement

using namespace std;

to bring the std namespace into visibility (i.e., to put std into the global namespace). After this
statement has been compiled, there is no difference between working with an old-style header
and a new-style one.

WORKING WITH AN OLD COMPILER

As mentioned, both namespaces and the new-style are recent additions to the C++ language.
While virtually all new C++ compilers support these features, older compilers might not. If
you have one of these older compilers, it will report one or more errors when it tries to compile
the first two lines of the sample programs in this book. If this is the case, there is an easy
workaround: simply use an old-style header and delete the namespace statement. That is,
just replace

7

TEACH YOURSELF
C++

#include <iostream >

using namespace std;

with

#include <iostream.h>

This change transforms a modern program into a traditional-style one. Since the old style
header reads all of its contents into the global namespace, there is no need for a namespace
statement.

One other point: For now and for the next few years, you will see many C++ programs that
use the old-style headers and that do not include a namespace statement. Your C++ compiler
will be able to compile them just fine. For new programs, however, you should use the modern
style because it is the only style of program that complies with Standard C++. While old-style
programs will continue to be supported for many years, they are technically noncompliant.

EXERCISE

1. Before proceeding, try compiling the new-style skeleton program shown above. Although it
does nothing, compiling it will tell you if your compiler supports the modern C++ syntax.
If it does not accept the new-style headers or the namespace statement, substitute the
old-style header as described. Remember, if your compiler does not accept new-style code,
you must make this change for each program in this book.

1.3 C++ CONSOLE I/O

Since C++ is a superset of C, all elements of the C language are also contained in the C++
language. This implies that all C programs are also C++ programs by default. (Actually, there
are some very minor exceptions to this rule, which are discussed later in this book.) Therefore,
it is possible to write C++ programs that look just like C programs. While there is nothing
wrong with this per se, it does mean that you will not be taking full advantage of C++. To
get the maximum benefit from C++, you must write C++ style programs. This means using
a coding style and features that are unique to C++.

Perhaps the most common C++ specific feature used by C++ programmers is its approach to
console I/O. While you may still use functions such as printf() and scanf(), C++ provides a
new, and better, way to perform these types of I/O operations. In C++, I/O is performed using
I/O operators instead of I/O functions. The output operator is <<and the input operator is
>>. As you know, in C, these are the left and right shift operators, respectively. In C++, they
still retain their original meanings (left and right shift) butt they also take on the expanded
role of performing input and output. Consider this C++ statement:

cout << "This string is output to the screen .\n";

This statement causes the string to be displayed on the computer’s screen. cout is a predefined
stream that is automatically linked to the console when a C++ program begins execution. It
is similar to C’s stdout. As in C, C++ console I/O may be redirected, but for the rest of this
discussion, it is assumed that the console is being used.

By using the <<output operator, it is possible to output any of C++’s basic types. For example,
this statement outputs the value 100.99:

cout << 100.99;

In general, to output to the console, use this form of the <<operator:

cout << expression;

8

AN OVERVIEW OF C++
1.3. C++ CONSOLE I/O

Here, expression can be any valid C++ expression-including another output expression.
To input a value from the keyboard, use the >>input operator. For example, this fragment
inputs an integer value into num:

int num;

cin >> num;

Notice that num is not preceded by an &. As you know, when you use C’s scanf() function
to input values, variables must have their addresses passed to the function so they can receive
the values entered by the user. This is not the case when you are using C++’s input operator.
(The reason for this will become clear as you learn more about C++.)
In general, to input values from the keyboard, use the form if >>:

cin >> variable;

Note: The expanded roles of <<and >>are examples if operator overloading.
In order to use the C++ I/O operators, you must include the header <iostream> in your
program. As explained earlier, this is one of C++’s standard headers and is supplied by your
C++ compiler.

EXAMPLES

1. This program outputs a string, two integer values, and a double floating-point value:

#include <iostream >

using namespace std;

int main()

{

int i, j;

double d;

i = 10;

j = 20;

d = 99.101;

cout << "Here are some values: ";

cout << i;

cout << ’ ’;

cout << j;

cout << ’ ’;

cout << d;

return 0;

}

The output of this program is shown here.

Here are some values: 10 20 99.101

Remember: If you are working with an older compiler, it might not accept the new-style
headers and the namespace statements used by this and other programs in this book. If
this is the case, substitute the old-style code described in the preceding section.

2. It is possible to output more than one value in a single I/O expression. For example, this
version of the program described in Example 1 shows a more efficient way to code the I/O
statements:

9

TEACH YOURSELF
C++

#include <iostream >

using namespace std;

int main()

{

int i, j;

double d;

i = 10;

j = 20;

d = 99.101;

cout << "Here are some values: ";

cout << i << ’ ’ << j << ’ ’ << d;

return 0;

}

Here the line

cout << i << ’ ’ << j << ’ ’ << d;

outputs several items in one expression. In general, you can use a single statement to
output as many items as you like. If this seems confusion, simply remember that the
>>output operator behaves like any other C++ operator and can be part of an arbitrarily
long expression.

Notice that you must explicitly include spaces between items when needed. If the spaces
are left out, the data will run together when displayed on the screen.

3. This program prompts the user for an integer value:

#include <iostream >

using namespace std;

int main()

{

int i;

cout << "Enter a value: ";

cin >> i;

cout << "Here;s your number: | << i << "\n";

return 0;

}

Here is a sample run:

Enter a value: 100

Here’s your number: 100

As you can see, the value entered by the user is put into i.

4. The next program prompts the user for an integer value, a floating-point value, and a
string. It then uses one input statement to read all three.

10

AN OVERVIEW OF C++
1.3. C++ CONSOLE I/O

#include <iostream >

using namespace std;

int main()

{

int i;

float f;

char s[80];

cout << "Enter an integer , float , and string: ";

cin >> i >> f >> s;

cout << "Here’s your data: ";

cout << i << ’ ’ << f << ’ ’ << s;

return 0;

}

As this example illustrates, you can input as many items as you like in one input statement.
As in C, individual data items must be separated by whitespace characters (spaces, tabls,
or newlines).

When a string is read, input will stop when the first whitespace character is encountered.
For example, if you enter the following into the preceding program

10 100.12 This is a test

the program will display this:

10 100.12 This

The string is incomplete because the reading of the string stopped with the space after
This. The remainder of the string is left in the input buffer, awaiting a subsequent input
operation. (This is similar to inputting a string by using scanf() with the %s format.)

5. By default, when you use >>, all input is line buffered. This means that no information
is passed to your C++ program until you press ENTER. (In C, the scanf() function is line
buffered, so this style of input should not be new to you.) To see the effect of line-buffered
input, try this program:

#include <iostream >

using namespace std;

int main()

{

char ch;

cout << "Enter keys , x to stop.\n";

do

{

cout << ": ";

cin >> ch;

}

while(ch!=’x’);

return 0;

}

11

TEACH YOURSELF
C++

When you test this program, you will have to press ENTER after each key you type in order
for the corresponding character to be sent to the program.

EXERCISES

1. Write a program that inputs the number of hours that an employee works and the em-
ployee’s wage. Then display the employee’s gross pay. (Be sure to prompt for input.)

2. Write a program that converts feet to inches. Prompt the user for feet and display the
equivalent number of inches. Have your program repeat this process until the user enters
0 for the number of feet.

3. Here is a C program. Rewrite it so it uses C++-style I/O statements.

#include <stdio.h>

int main(void)

{

int a, b, d, min;

printf("Enter two numbers: ");

scanf("%d%d", &a, &b);

min = a > b ? b : a;

for(d = 2; d<min; d++)

if(((a%d)==0) && ((b%d)==0))

break;

if(d==min)

{

printf("No common denominators\n");

return 0;

}

printf("The lowest common denominator is %d\n", d);

return 0;

}

1.4 C++ COMMENTS

In C++, you can include comments in your program two different ways. First, you can use the
standard, C-like comment mechanism. That is, begin a comment with /* and end it with */.
As with C, this type of comment cannot be nested in C++.

The second way that you can add a remark to your C++ program is to use the single-line
comment. A single-line comment begins with a // and stops at the end of the line. Other
than the physical end of the line (that is, a carriage-return/linefeed combination), a single-line
comment uses no comment terminator symbol.

Typically, C++ programmers use C-like comments for multiline commentaries and reserve C++-
style single-line comments for short remarks.

EXAMPLES

1. Here is a program that contains both C and C++-style comments:

12

AN OVERVIEW OF C++
1.5. CLASSES: A FIRST LOOK

/*

This is a C-like comment.

This program determines whether

an integer is odd or even

*/

#include <iostream >

using namespace std;

int main()

{

int num; // this is a C++ single -line comment

// read the number

cout << "Enter number to be tested: ";

cin >> num;

// see if even or odd

if((num %2) ==0)

cout << "Number is even\n";

else

cout << "Number is odd\n";

return 0;

}

2. While multiline comments cannot be nested, it is possible to nest a single-line comment
within a multiline comment. For example, this is perfectly valid:

/*

This is a multiline comment

inside of which // is nested a single -line comment.

Here is the end of the multiline comment.

*/

EXERCISES

1. As an experiment, determine whether this comment (which nests a C-like comment within
a C++-style, single-line comment) is valid:

// This is a strange /* way to do a comment */

2. On your own, add comments to the answers to the exercises in Section 1.3.

1.5 CLASSES: A FIRST LOOK

Perhaps the single most important feature of C++ is the class. The class is the mechanism that
is used to create objects. As such, the class is at the heart of many C++ features. Although
the subject of classes is covered in great detail throughout this book, classes are so fundamental
to C++ programming that a brief overview is necessary here.
A class is declared using the class keyword. The syntax of a class declaration is similar to that
of a structure. Its general form is shown here:

13

TEACH YOURSELF
C++

class class_name

{

// private functions and variables

public:

// public functions and variables

} object_list;

In a class declaration, the object-list is optional. As with a structure, you can declare class
objects later, as needed. While the class-name is also technically optional, from a practical
point of view it is virtually always needed. The reason for this is that the class-name becomes
a new type name that is used to declare objects of the class.

Functions and variables declared inside a class declaration are said to be members of that class.
By default, all functions and variables declared inside a class are private to that class. This
means that they are accessible, only by other members of that class. To declare public class
members, the public keyword is used, followed by a colon. All functions and variables declared
after the public specifier are accessible both by other members of the class and by any other
part of the program that contains the class.

Here is a simple class declaration:

class myclass

{

// private to myclass

int a;

public:

void set_a(int num);

int get_a();

};

This class has one private variable, called a, and two public functions, set a() and get a()
Notice that functions are declared within a class using their prototype forms. Functions that
are declared to be part of a class are called member functions.

Since a is private, it is not accessible by any code outside myclass. However, since set a()
and get a() are members of myclass, they can access a. Further, get a() and set a() are
declared as public members of myclass and can be called by any other part of the program
that contains myclass.

Although the functions get a() and set a() are declared by myclass, they are not yet defined.
To define a member function, you must link the type name of the class with the name of the
function. You do this by preceding the function name with the class name followed by two
colons. The two colons are called the scope resolution operator. For example, here is the way
the member functions set a() and get a() are defined:

void myclass :: set_a(int num)

{

a = num;

}

int myclass :: get_a()

{

return a;

}

Notice that both set a() and get a() have access to a, which is private to myclass. Because
set a() and get a() are members of myclass, they can directly access its private data.

In general, to define a member function you must use this form:

14

AN OVERVIEW OF C++
1.5. CLASSES: A FIRST LOOK

ret_type class_name :: func_name(parameter_list)

{

// body of function

}

Here class-name is the name of the class to which the function belongs.

The declaration of myclass did not define any objects of type myclass-it only defines the type
of object that will be created when one is actually declared. To create an object, use the class
name as a type specifier. For example, this line declares two objects of type myclass:

myclass ob1 , ob2; // these are objects of type myclass

Remember: A class declaration is a logical abstraction that defines a new type. It determines
what an object of that type will look like, An object declaration creates a physical entity of that
type. That is, an object occupies memory space, but a type definition does not.

Once an object of a class has been created, your program can reference its public members by
using the dot (period) operator in much the same way that structure members are accessed.
Assuming the preceding object declaration, the following statement calls set a() for objects
ob1 and ob2:

ob1.set_a (10); // sets ob1’s version of a to 10

ob2.set_a (99); // sets ob2’s version of a to 99

As the comments indicate, these statements set ob1’s copy of a to 10 and ob2’s copy to 99.
Each object contains its own copy of all data declared within the class. This means that ob1’s
a is distinct and different from the a linked to ob2.

Remember: Each object of a class has its own copy of every variable declared within the
class.

EXAMPLES

1. As a simple first example, this program demonstrates myclass, described in the text. It
sets the value of a of ob1 and ob2 and then displays a’s value for each object:

#include <iostream >

using namespace std;

class myclass

{

// private to myclass

int a;

public:

void set_a(int num);

int get_a();

};

void myclass :: set_a(int num)

{

a = num;

}

int myclass :: get_a()

{

return a;

}

15

TEACH YOURSELF
C++

int main()

{

myclass ob1 , ob2;

ob1.set_a (10);

ob2.set_a (99);

cout << ob1.get_a() << "\n";

cout << ob2.get_a() << "\n";

return 0;

As you should expect, this program displays the values 10 and 99 on the screen.

2. In myclass from the preceding example, a is private. This means that only member
functions of myclass can access it directly. (This is one reason why the public function
get a() is required.) If you try to access a private member of a class from some part
of your program that is not a member of that class, a compile-time error will result.
For example, assuming that myclass is defined as shown in the preceding example, the
following main() function will cause an error:

// This fragment contains an error

#include <iostream >

using namespace std;

int main()

{

myclass ob1 , ob2;

ob1.a = 10; // ERROR! cannot access private member

ob2.a = 99; // by non -member functions.

cout << ob1.get_a() << "\n";

cout << ob2.get_a() << "\n";

return 0;

}

3. Just as there can be public member functions, there can be public member variables
as well. For example, if a were declared in the public section of myclass a could be
referenced by any part of the program, as shown here:

// This fragment contains an error

#include <iostream >

using namespace std;

class myclass

{

public:

// now a is public

int a;

// and there is no need for set_a() or get_a()

16

AN OVERVIEW OF C++
1.5. CLASSES: A FIRST LOOK

};

int main()

{

myclass ob1 , ob2;

// here a is accessed directly

ob1.a = 10;

ob2.a = 99;

cout << ob1.a << "\n";

cout << ob2.a << "\n";

return 0;

}

In this example, since a is declared as a public member of myclass, it is directly accessible
from main(). Notice how the dot operator is used to access a. In general, when you are
calling a member function or accessing a member variable from outside its class, the
object’s name followed by the dot operator followed by the member’s name is required to
fully specify which object’s member you are referring to.

4. To get a taste of the power of objects, let’s look at a more practical example. This program
creates a class called stack that implements a stack that can be used to store characters:

#include <iostream >

using namespace std;

#define SIZE 10

// Declare a stack class for characters

class stack

{

char stck[SIZE]; // holds the stack

int tos; // index of top of stack

public:

void init(); // initialize stack

void push(char ch); // push character on stack

char pop(); // pop character from stack

};

// Initialize the stack

void stack::init()

{

tos = 0;

}

// Push a character

void stack::push(char ch)

{

if(tos==SIZE)

17

TEACH YOURSELF
C++

{

cout << "stack is full";

return;

}

stck[tos] = ch;

tos ++;

}

// Pop a character

char stack::pop()

{

if(tos ==0)

{

cout << "Stack is empty";

return 0; // return null on empty stack

}

tos --;

return stck[tos];

}

int main()

{

stack s1, s2; // create two stacks

int i;

// initialize the stacks

s1.init();

s2.init();

s1.push(’a’);

s2.push(’x’);

s1.push(’b’);

s2.push(’y’);

s1.push(’c’);

s2.push(’z’);

for(i=0; i<3; i++)

cout << "Pop s1: " << s1.pop() << "\n";

for(i=0; i<3; i++)

cout << "Pop s2: " << s2.pop() << "\n";

return 0;

}

This program displays the following output:

Pop s1: c

Pop s1: b

Pop s1: a

Pop s2: z

Pop s2: y

18

AN OVERVIEW OF C++
1.6. SOME DIFFERENCES BETWEEN C AND C++

Pop s2: x

Let’s take a close look at this program now. The class stack contains two private variables:
stck and tos. The array stck actually holds the characters pushed onto the stack, and tos
contains the index to the top of the stack. The public stack functions are init(), push(),
and pop(), which initialize the stack, push a value, and pop a value, respectively.

Inside main(), two stacks, s1 and s2, are created, and three characters are pushed onto
each stack. It is important to understand that each stack object is separate from the
other. That is, the characters pushed onto s1 in no way affect the characters pushed onto
s2. Each object contains its own copy of stck and tos. This concept is fundamental to
understanding objects. Although all objects of a class share their member functions, each
object creates and maintains its own data.

EXERCISES

1. If you have not done so, enter and run the programs shown in the examples for this section.

2. Create a class called card that maintains a library card catalog entry. Have the class
store a book’s title, author, and number of copies on hand. Store the title and author
as strings and the number on hand as an integer. Use a public member function called
store() to store a book’s information and a public member function called show() to
display the information. Include a short main() function to demonstrate the class.

3. Create a queue class that maintains a circular queue of integers. Make the queue size 100
integers long. Include a short main() function that demonstrates its operation.

1.6 SOME DIFFERENCES BETWEEN C AND C++

Although C++ is a superset of C, there are some small differences between the two, and a few
are worth knowing from the start. Before proceeding, let’s take time to examine them.
First, in C, when a function takes no parameters, its prototype has the word void inside its
function parameter list. For example, in C, if a function called f1() takes no parameters (and
returns a char, its prototype will look like this:
char f1(void);
However, in C++, the void is optional. Therefore, in C++, the prototype for f1() is usually
written like this:
char f1();
C++ differs from C in the way that an empty parameter list is specified. If the preceding
prototype had occurred in a C program, it would simply mean that nothing is said about the
parameters to the function. In C++, it means that the function has no parameters. This is the
reason that the preceding examples did not explicitly use void to declare an empty parameters
list. (The use of void to declare an empty parameter list is not illegal; it is just redundant.
Since most C++ programmers pursue efficiency with a nearly religious zeal, you will almost
never see void used in this way.) Remember, in C++, these two declarations are equivalent:

char f1();

char f1(void);

Another subtle difference between C and C++ is that in a C++ program, all functions must be
prototyped. Remember, in C, prototypes are recommended but technically optional. In C++,
they are required. As the examples from the previous section show, a member function’s proto-
type contained in a class also serves as its general prototype, and no other separate prototype
is required.

19

TEACH YOURSELF
C++

A third difference between C and C++ is that in C++, if a function is declared as returning
a value, it must return a value. That is, if a function has a return type other than void, any
return statement within that function must contain a value. In C, a non-void function is not
required to actually return a value. If it doesn’t, a garbage value is ”returned”.
In C, if you don’t explicitly specify the return type of a function, an integer return type is
assumed. C++ has dropped the ”default-to-int” rule. Thus, you must explicitly declare the
return type of all functions.
One other difference between C and C++ that you will commonly encounter in C++ programs
has to do with where local variables can be declared. In C, local variables can declared only at
the start of a block, prior to any ”action” statements. In C++, local variables can be declared
anywhere. One advantage of this approach is that local variables can be declared close to where
they are first used, thus helping to prevent unwanted side effects.
Finally, C++ defines the bool data type, which is used to store Boolean (i.e., true/false) values.
C++ also defines the keywords true and false, which are the only values that a value of type
bool can have. In C++, the outcome of the relational and logical operators is a value of type
bool, and all conditional statements must evaluate to a bool value. Although this might at
first seem to be a big change from C, it isn’t. In fact, it is virtually transparent. Here’s why: As
you know, in C, true is any nonzero value and false is 0. This still holds in C++ because any
nonzero value is automatically converted into false when used in a Boolean expression. The
reverse also occurs: true is converted to 1 and false is converted to 0 when a bool value is used
in an integer expression. The addition of bool allows more thorough type checking and gives
you a way to differentiate between Boolean and integer types. Of course, its use is optional;
bool is mostly a convenience.

EXAMPLES

1. In a C program, it is common practice to declare main() as shown here if it takes no
command-line arguments:

int main(void)

However, in C++, the use of void is redundant and unnecessary.

2. This short C++ program will not compile because the function sum() is not prototyped:

// This program will not compile

#include <iostream >

using namespace std;

int main()

{

int a, b, c;

cout << "Enter two numbers: ";

cin >> a >> b;

c = sum(a, b);

cout << "Sum is: " << c;

return 0;

}

// This function needs a prototype

sum(int a, int b)

{

20

AN OVERVIEW OF C++
1.6. SOME DIFFERENCES BETWEEN C AND C++

return a+b;

}

3. Here is a short program that illustrates how local variables can be declared anywhere
within a block:

#include <iostream >

using namespace std;

int main()

{

int i; // local var declared at start of block

cout << "Enter number: ";

cin >> i;

// compute factorial

int j, fact =1; // vars declared after action statement

for(j=i; j>=1; j--)

fact = fact * j;

cout << "Factorial is " << fact;

return 0;

}

The declaration of j and fact near the point of first use is of little value in this short
example; however, in large functions, the ability to declare variables close to the point of
their first use can help clarify your code and prevent unintentional side effects.

4. The following program creates a Boolean variable called outcome and assigns it the value
false. It then uses this variable in an if statement.

#include <iostream >

using namespace std;

int main()

{

bool outcome;

outcome = false;

if(outcome)

cout << "true";

else

cout << "false";

return 0;

}

As you should expect, the program displays false.

21

TEACH YOURSELF
C++

EXERCISES

1. The following program will not compile as a C++ program. Why not?

// This program has an error.

#include <iostream >

using namespace std;

int main()

{

f();

return 0;

}

void f()

{

cout << "this won’t work";

}

2. On your own, try declaring local variables at various points in a C++ program. Try the
same in a C program, paying attention to which declarations generate errors.

1.7 INTRODUCING FUNCTION OVERLOADING

After classes, perhaps the next most important and pervasive C++ feature is function over-
loading. Not only does function overloading provide the mechanism by which C++ achieves one
type of polymorphism, it also forms the basis by which the C++ programming environment
can be dynamically extended. Because of the importance of overloading, a brief discussion is
given here.
In C++, two or more functions can share the same name as long as either the type of their
arguments differs or the number of their arguments differs-or both. When two or more functions
share the same name, they are said to be overloaded.Overloaded functions can help reduce the
complexity of a program by allowing related operations to be referred to by the same name.
It is very easy to overload a function: simply declare and define all required versions. The
compiler will automatically select the correct version based upon the number and/or type of
the arguments used to call the function.
Note: It is also possible in C++ to overload operators. However, before you can fully under-
stand operator overloading, you will need to know more about C++.

EXAMPLES

1. One of the main uses for function overloading is to achieve compile-time polymorphism,
which embodies the philosophy of one interface, many methods. As you know, in C
programming, it is common to have a number of related functions that differ only by the
type of data on which they operate. The classic example of this situation is found in the C
standard library. As mentioned earlier in this chapter, the library contains the functions
abs(), labs(), and fabs(), which return the absolute value of an integer, a long integer,
and a floating-point value, respectively.

How ever, because three different names are needed due to the three different data types,
the situation is more complicated than it needs to be. In all three cases, the absolute
value is being returned; only the type of the data differs. In C++, you can correct this

22

AN OVERVIEW OF C++
1.7. INTRODUCING FUNCTION OVERLOADING

situation by overloading one name for the three types of data, as this example illustrates:

#include <iostream >

using namespace std;

// Overload abs() three ways

int abs(int n);

long abs(long n);

double abs(double n);

int main()

{

cout << "Absolute value of -10: " << abs(-10) << "\n\n";

cout << "Absolute value of -10L: " << abs(-10L) << "\n\n"

;

cout << "Absolute value of -10.01: " << abs (-10.01) << "\

n\n";

return 0;

}

// abs() for ints

int abs(int n)

{

cout << "In integer abs()\n";

return n<0 ? -n : n;

}

// abs() for longs

long abs(long n)

{

cout << "In long abs()\n";

return n<0 ? -n : n;

}

// abs() for doubles

double abs(double n)

{

cout << "In double abs()\n";

return n<0 ? -n : n;

}

As you can see, this program defines three functions called abs()-one for each data type.
Inside main(), abs() is called using three different types of arguments. The compiler
automatically calls the correct version of abs() based upon the type of data used as an
argument. The program produces the following output:

In integer abs()

Absolute value of -10: 10

In long abs()

Absolute value of -10L: 10

23

TEACH YOURSELF
C++

In double abs()

Absolute value of -10.01: 10.01

Although this example is quite simple, it still illustrates the value of function overloading.
Because a single name can be used to describe a general class of action, the artificial
complexity cause by three slightly different names-in this case, abs(), fabs() and labs()-
is eliminated. You now must remember only one name-the one that describes the general
action. It is left to the compiler to choose the appropriate specific version of the function
(that is, the method) to call. This has the net effect of reducing complexity. Thus, through
the use of polymorphism, three names have been reduced to one.

While the use of polymorphism in this example is fairly trivial, you should be able to see
how in a very large program, the ”one interface, multiple methods” approach can be quite
effective.

2. Here is another example of function overloading. In this case, the function date() is
overloaded to accept the date either as a string or as three integers. In both cases, the
function displays the data passed to it.

#include <iostream >

using namespace std;

void date(char *date); // date as a string

void date(int month , int day , int year); //date as numbers

int main()

{

date("8/23/99");

date(8, 23, 99);

return 0;

}

// Date as string.

void date(char *date)

{

cout << "Date: " << date << "\n";

}

// Date as integers.

void date(int month , int day , int year)

{

cout << "Date: " << month << "/";

cout << day << "/" << year << "\n";

}

This example illustrates how function overloading can provide the most natural interface
to a function. Since it is very common for the date to be represented as either a string
or as three integers containing the month, day, and year, you are free to select the most
convenient form relative to the situation at hand.

3. So far, you have seen overloaded functions that differ in the data types of their arguments.
However, overloaded functions can also differ in the number of arguments, as this example
illustrates:

24

AN OVERVIEW OF C++
1.7. INTRODUCING FUNCTION OVERLOADING

#include <iostream >

using namespace std;

void f1(int a);

void f1(int a, int b);

int main()

{

f1(10);

f1(10, 20);

return 0;

}

void f1(int a)

{

cout << "In f1(int a)\n";

}

void f1(int a, int b)

{

cout << "In f1(int a, int b)\n";

}

4. It is important to understand that the return type alone is not a sufficient difference to
allow function overloading. If two functions differ only in the type of data they return,
the compiler will not always be able to select the proper one to call. For example, this
fragment is incorrect because it is inherently ambiguous.

// This is incorrect and will not compile.

int f1(int a);

double f1(int a);

.

.

.

f1(10); // which function does the compiler call ???

As the comment indicates, the compiler has o way of knowing which version of f1() to
call.

EXERCISES

1. Create a function called sroot() that returns the square root of its argument. Overload
sroot() three ways: have it return the square root of an integer, a long integer, and a
double. (To actually compute the square root, you can use the standard library function
sqrt().)

2. The C++ standard library contains these three functions:

double atof(const char *s);

int atoi(const char *s);

long atol(const char *s);

25

TEACH YOURSELF
C++

These functions return the numeric value contained in the string pointed to by s. Specif-
ically, atof() returns a double, atoi() returns an integer, and atol() returns a long.
Why is it not possible to overload these functions?

3. Create a function called min() that returns the smaller of the two numeric arguments
used to call the function. Overload min() so it accepts characters, integers, and doubles
as arguments.

4. Create a function called sleep() that pauses the computer for the number of seconds
specified by its single argument. Overload sleep() so it can be called with either an
integer or a string representation of an integer. For example, both of these calls to sleep()
will cause the computer to pause for 10 seconds:

sleep (10);

sleep("10");

Demonstrate that your functions work by including them in a short program. (Feel free
to use a delay loop to pause the computer.)

1.8 C++ KEYWORDS

C++ supports all of the keywords defined by C and adds 30 of its own. The entire set of
keywords defined by C++ is shown in table below. Also early versions of C++ defined the
overload keyword, but it is now obsolete.

asm const cast explicit int register switch union
auto continue extern long reinterpret cast template unsigned
bool default false mutable return this using
break delete float namespace short throw virtual
case do for new signed true void
catch double friend operator sizeof try volatile
char dynamic cast goto private static typedef wchar t
class else if protected static cast typeid while
const enum inline public struct typename

SKILLS CHECK

Mastery Skills Check

At this point you should be able to perform the following exercises and answer the questions.

1. Give brief descriptions of polymorphism, encapsulation, and inheritance.

2. How can comments be included in a C++ program?

3. Write a program that uses C++-style I/O to input two integers from the keyboard and
then displays the result of raising the first to the power of the second. (For example, if
the user enters 2 and 4, the result is 24, or 16.)

4. Create a function called rev str() that reverses a string. Overload rev str() so it can be
called with either one character array or two. When it is called with one string, have that
one string contain the reversal. When it is called with two strings, return the reversed
string in the second argument. For example:

26

AN OVERVIEW OF C++
SKILLS CHECK

char s1[80], s2 [80];

strcpy(s1, "hello");

rev_str(s1 , s2); // reversed string goes in s2 , s1 untouched

rev_str(s1); // reversed string is returned in s1

5. Given the following new-style C++ program, show how to change it into its old-style form.

#include <iostream >

using namespace std;

int f(int a);

int main()

{

cout << f(10);

return 0;

}

int f(int a)

{

return a * 3.1416;

}

6. What is the bool data type?

27

TEACH YOURSELF
C++

This Page Intentionally Left Blank.

(well, except for those 5 words...
and those 6 words...
and those 4 words...

Oh my word, this I’d better curb,
’cause this is so absurd!)

28

2
Introducing Classes

Chapter Objectives

2.1 Constructor and destructor functions

2.2 Constructors that take parameters

2.3 Introducing inheritance

2.4 Object pointers

2.5 Classes, structures, and unions are related

2.6 In-line functions

2.7 Automatic in-lining

29

TEACH YOURSELF
C++

This chapter introduces classes and objects. Several important topics are covered that relate
to virtually all aspects of C++ programming, so a careful reading is advised.

Review Skills Check

Before proceeding, you should be able to correctly answer the following questions and do the
exercises.

1. Write a program that uses C++-style I/O to prompt the user for a string and then display
its length.

2. Create a class that holds name and address information. Store all the information in
character strings that are private members of the class. Include a public function that
stores the name and address. Also include a public function that displays the name and
address. (Call these functions store() and display().)

3. Create an overloaded rotate() function that left-rotates the bits in its argument and
returns the result. Overload it so it accepts ints and longs. (A rotate is similar to a shift
except that the bit shifted off one end is shifted onto the other end.)

4. What is wrong with the following fragment?

#include <iostream >

using namespace std;

class myclass

{

int i;

public:

.

.

.

};

int main()

{

myclass ob;

ob.i = 10;

.

.

.

}

2.1 CONSTRUCTOR AND DESTRUCTOR FUNCTIONS

If you have been writing programs for very long, you know that it is common for parts of your
program to require initialization. The need for initialization is even more common when you are
working with objects. In fact, when applied to real problems, virtually every object you create
will require some sort of initialization. To address this situation, C++ allows a constructor
function to be included in a class declaration. A class’s constructor is called each time an
object of that class is created. Thus, any initialization that needs to be performed on an object
can be done automatically by the constructor function.

30

INTRODUCING CLASSES
2.1. CONSTRUCTOR AND DESTRUCTOR FUNCTIONS

A constructor function has the same name as the class of which it is a part and has no return
type. For example, here is a short class that contains a constructor function:

#include <iostream >

using namespace std;

class myclass

{

int a;

public:

myclass (); // constructor

void show();

};

myclass :: myclass ()

{

cout << "In constructor\n";

a = 10;

}

void myclass ::show()

{

cout << a;

}

int main()

{

myclass ob;

ob.show();

return 0;

}

In this simple example, the value of a is initialized by the constructor myclass(). The construc-
tor is called when the object is created. An object is created when that object’s declaration
statement is executed. It is important to understand that in C++, a variable declaration
statement is an ”action statement.” When you are programming in C, it is easy to think of
declaration statements as simply establishing variables. However, in C++, because an object
might have a constructor, a variable declaration statement may, in fact, cause a considerable
number of actions to occur.
Notice how myclass() is defined. As stated, it has no return type. According to the C++
formal syntax rules, it is illegal for a constructor to have a return type.
For global objects, an object’s constructor is called once, when the program first begins ex-
ecution. For local objects, the constructor is called each time the declaration statement is
executed.
The complement of a constructor is the destructor. This function is called when an object is
destroyed. When you are working with objects, it is common to have to perform some actions
when an object is destroyed. For example, an object that allocates memory when it is created
will want to free that memory when it is destroyed. The name of destructor is the name of its
class, preceded by a ∼. For example, this class contains a destructor function:

31

TEACH YOURSELF
C++

#include <iostream >

using namespace std;

class myclass

{

int a;

public:

myclass (); // constructor

~myclass (); // destructor

};

myclass :: myclass ()

{

cout << "In constructor\n";

a = 10;

}

myclass ::~ myclass ()

{

cout << "Destructing ...\n";

}

void myclass ::show()

{

cout << a << "\n";

}

int main()

{

myclass ob;

ob.show();

return 0;

}

A class’s destructor is called when an object is destroyed. Local objects are destroyed when
they go out of scope. Global objects are destroyed when the program ends.

It is not possible to take the address of either a constructor or a destructor.

Note: Technically, a constructor or a destructor can perform any type of operation. The code
within these functions does not have to initialize or reset anything related to the class for which
they are defined. For example, a constructor for the preceding examples could have computed pi
to 100 places. However, having a constructor or destructor perform actions not directly related
to the initialization or orderly destruction of an object makes for very poor programming style
and should be avoided.

EXAMPLES

1. You should recall that the stack class created in Chapter 1 required an initialization
function to set the stack index variable. This is precisely the sort of operation that a
constructor function was designed to perform . Here is an improved version of the stack
class that uses a constructor to automatically initialize a stack object when it is created:

32

INTRODUCING CLASSES
2.1. CONSTRUCTOR AND DESTRUCTOR FUNCTIONS

#include <iostream >

using namespace std;

#define SIZE 10

// Declare a stack class for characters.

class stack

{

char stck[SIZE]; // holds the stack

int tos; // index of top of stack

public:

stack (); // constructor

void push(char ch); // push character on stack

char pop(); // pop character from stack

};

// Initialize the stack.

stack ::stack ()

{

cout << "Constructing a stack\n";

tos = 0;

}

// Push a character

void stack::push(char ch)

{

if(tos==SIZE)

{

cout << "Stack is full\n";

return;

}

stck[tos] = ch;

tos ++;

}

// Pop a character

char stack::pop()

{

if(tos ==0)

{

cout << "Stack is empty\n";

return 0; // return null on empty stack

}

tos --;

return stck[tos];

}

int main()

{

// Create two stacks that are automatically initialized.

stack s1, s2;

33

TEACH YOURSELF
C++

int i;

s1.push(’a’);

s2.push(’x’);

s1.push(’b’);

s2.push(’y’);

s1.push(’c’);

s2.push(’z’);

for(i=0; i<3; i++)

cout << "Pop s1: " << s1.pop() << "\n";

for(i=0; i<3; i++)

cout << "Pop s2: " << s2.pop() << "\n";

return 0;

}

As you can see, now the initialization task is performed automatically by the constructor
function rather than by a separate function that must be explicitly called by the program.
This is an important point. When an initialization is performed automatically when an
object is created, it eliminates any prospect that, by error, the initialization will not be
performed. This is another way that objects help reduce program complexity. You, as the
programmer, don’t need to worry about initialization-it is performed automatically when
the object is brought into existence.

2. Here is an example that shows the need for both a constructor and a destructor function.
It creates a simple string class, called strtype, that contains a string and its length. When
a strtype object is created, memory is allocated to hold the string and its initial length
is set to 0. When strtype object is destroyed, that memory is released.

#include <iostream >

#include <cstring >

#include <cstdlib >

using namespace std;

#define SIZE 25

class strtype

{

char *p;

int len;

public:

strtype (); // constructor

~strtype (); // destructor

void set(char *ptr);

void show();

};

// Initialize a string object.

strtype :: strtype ()

{

p = (char *) malloc(SIZE);

if(!p)

{

34

INTRODUCING CLASSES
2.1. CONSTRUCTOR AND DESTRUCTOR FUNCTIONS

cout << "Allocation error\n";

exit (1);

}

*p = ’\0’;

len = 0;

}

// Free memory when destroying string object.

strtype ::~ strtype ()

{

cout << "Freeing p\n";

free(p);

}

void strtype ::set(char *ptr)

{

if(strlen(p) >= SIZE)

{

cout << "String too big\n";

return;

}

strcpy(p, ptr);

len = strlen(p);

}

void strtype ::show()

{

cout << p << " - length: " << len;

cout << "\n";

}

int main()

{

strtype s1 , s2;

s1.set("This is a test.");

s2.set("I like C++."):

s1.show();

s2.show();

return 0;

}

The program uses malloc and free() to allocate and free memory. While this is perfectly
valid, C++ does provide another way to dynamically manage memory, as you will see
later in this book.

Note: The preceding program uses the new-style headers for the C library functions used
by the program. As mentioned in Chapter 1, if your compiler does not support these
headers, simply substitute the standard C header files. This applies to other programs in
this book in which C library functions are used.

35

TEACH YOURSELF
C++

3. Here is an interesting way to use an object’s constructor and destructor. This program
uses an object of the timer class to time the interval between when an object of type
timer is created and when it is destroyed. When the object’s destructor is called, the
elapsed time is displayed. You could use an object like this to time the duration of a
program or the length of time a function spends within a block. Just make sure that the
object goes out of scope at the point at which you want the timing interval to end.

#include <iostream >

#include <ctime >

using namespace std;

class timer

{

clock_t start;

public:

timer (); // constructor

~timer (); // destructor

};

timer ::timer ()

{

start = clock ();

}

timer ::~ timer ()

{

clock_t end;

end = clock();

cout << "Elapsed time: " << (end -start) / CLOCKS_PER_SEC

<< "\n";

}

int main()

{

timer ob;

char c;

// delay ...

cout << "Press a key followed by ENTER: ";

cin >> c;

return 0;

}

This program uses the standard library function clock(), which returns the number of
clock cycles that have taken place since the program started running. Dividing this value
by CLOCKS PER SEC converts the value to seconds.

EXERCISES

1. Rework the queue class that you developed as an exercise in Chapter 1 by replacing its
initialization function with a constructor.

36

INTRODUCING CLASSES
2.2. CONSTRUCTORS THAT TAKE PARAMETERS

2. Create a class called stopwatch that emulates a stopwatch that keeps track of elapsed
time. Use a constructor to initially set the elapsed time to 0. Provide two member
functions called start() and stop() that turn on and off the timer, respectively. Include
a member function called show() that displays the elapsed time. Also, have the destructor
function automatically display elapsed time when a stopwatch object is destroyed. (To
simplify, report the time in seconds.)

3. What is wrong with the constructor shown in the following fragment?

class sample

{

double a, b, c;

public:

double sample (); // error , why?

};

2.2 CONSTRUCTORS THAT TAKE PARAMETERS

It is possible to pass arguments to a constructor function. To allow this, simply add the
appropriate parameters to the constructor function’s declaration and definition. Then, when
you declare an object, specify the arguments. To see how this is accomplished, let’s begin with
the short example shown here:

#include <iostream >

using namespace std;

class myclass

{

int a;

public:

myclass(int x);

void show();

};

myclass :: myclass(int x)

{

cout << "In constructor\n";

a = x;

}

void myclass ::show()

{

cout << a << "\n";

}

int main()

{

myclass ob(4);

ob.show();

return 0;

37

TEACH YOURSELF
C++

}

Here the constructor for myclass takes one parameter. The value passed to myclass() is used
to initialize a. Pay special attention to how ob is declared in main(). The value 4, specified
in the parentheses following ob, is the argument that is passed to myclass()’s parameter x,
which is used to initialize a.

Actually, the syntax for passing an argument to a parameterized constructor is shorthand for
this longer form:

myclass ob = myclass(4)

however, most C++ programmers use the short form. Actually, there is a slight technical
difference between the two forms that relates to copy constructors, which are discussed later in
this book. But you don’t need to worry about his distinction now.

Note: Unlike constructor functions, destructor functions cannot have parameters. The reason
for this simple enough to understand: there exists no mechanism by which to pass arguments to
an object that is being destroyed.

EXAMPLES

1. It is possible-in fact, quite common-to pass a constructor more than one argument. Here
myclass() is passed two arguments:

#include <iostream >

using namespace std;

class myclass

{

int a, b;

public:

myclass(int x, int y); // constructor

void show();

};

myclass :: myclass(int x, int y)

{

cout << "In constructor\n";

a = x;

b = y;

}

void myclass ::show()

{

cout << a << ’ ’ << b << "\n";

}

int main()

{

myclass ob(4, 7);

ob.show();

return 0;

}

38

INTRODUCING CLASSES
2.2. CONSTRUCTORS THAT TAKE PARAMETERS

Here 4 is passed to x and 7 is passed to y. This same general approach is used to pass
any number of arguments you like (up to the limit set by the compiler, of course).

2. Here is another version of the stack class that uses a parameterized constructor to pass a
”name” to a stack. This single-character name is used to identify the stack that is being
referred to when an error occurs.

#include <iostream >

using namespace std;

#define SIZE 10

// Declare a stack class for characters.

class stack

{

char stck[SIZE]; // holds the stack

int tos; // index of top of stack

char who; // identifies stack

public:

stack(char c); // constructor

void push(char ch); // push character on stack

char pop(); // pop character from stack

};

// Initialize the stack.

stack ::stack(char c)

{

tos = 0;

who = c;

cout << "Constructing stack " << who << "\n";

}

// Push a character.

void stack::push(char ch)

{

if(tos==SIZE)

{

cout << "Stack " << who << " is full\n";

return;

}

stck[tos] = ch;

tos ++;

}

// Pop a character.

char stack::pop()

{

if(tos ==0)

{

cout << "Stack " << who << " is empty\n";

return 0; // return null on empty stack

}

39

TEACH YOURSELF
C++

tos --;

return stck[tos];

}

int main()

{

// Create two stacks that are automatically initialized.

stack s1(’A’), s2(’B’);

int i;

s1.push(’a’);

s2.push(’x’);

s1.push(’b’);

s2.push(’y’);

s1.push(’c’);

s2.push(’z’);

// This will generate some error messages.

for(i=0; i<5; i++)

cout << "Pop s1: " << s1.pop() << "\n";

for(i=0; i<5; i++)

cout << "Pop s2: " << s2.pop() << "\n";

return 0;

}

Giving objects a ”name,” as shown in this example, is especially useful during debugging,
when it is important to know which object generates an error.

3. Here is a different way to implement the strtype class (developed earlier) that uses a
parameterized constructor function:

#include <iostream >

#include <cstring >

#include <cstdlib >

using namespace std;

class strtype

{

char *p;

int len;

public:

strtype(char *ptr);

~strtype ();

void show();

};

strtype :: strtype(char *ptr)

{

len = strlen(ptr);

p = (char *) malloc(len+1);

if(!p)

40

INTRODUCING CLASSES
2.2. CONSTRUCTORS THAT TAKE PARAMETERS

{

cout << "Allocation error\n";

exit (1);

}

strcpy(p, ptr);

}

strtype ::~ strtype ()

{

cout << "Freeing p\n";

free(p);

}

void strtype ::show()

{

cout << p << " - length: " << len;

cout << "\n";

}

int main()

{

strtype s1("This is a test."), s2("I like C++.");

s1.show();

s2.show();

return 0;

}

In this version of strtype, a string is given an initial value using the constructor function.

4. Although the previous examples have used constants, you can pass an object’s constructor
any valid expression, including variables. For example, this program uses user input to
construct an object:

#include <iostream >

using namespace std;

class myclass

{

int i, j;

public:

myclass(int a, int b);

void show();

};

myclass :: myclass(int a, int b)

{

cout << "In constructor\n";

i = a;

j = b;

}

41

TEACH YOURSELF
C++

void myclass ::show()

{

cout << i << ’ ’ << j << "\n";

}

int main()

{

int x, y;

cout << "Enter two integers: ";

cin >> x >> y;

// use variables to construct ob

myclass ob(x, y);

ob.show();

return 0;

}

This program illustrates an important point about objects. They can be constructed as
needed to fit the exact situation at the time of their creation. As you learn more about
C++, you will see how useful constructing objects ”on the fly” is.

EXERCISES

1. Change the stack class so it dynamically allocates memory for the stack. Have the size
of the stack specified by a parameter to the constructor function. (Don’t forget to free
this memory with a destructor function.)

2. Create a class called t and d that is passed the current system time and date as a
parameter to its constructor when it is created. Have the class include a member function
that displays this time and date on the screen. (Hint: Use the standard time and date
functions found in the standard library to find and display the time and date.)

3. Create a class called box whose constructor function is passed three double values, each
of which represents the length of one side of a box. Have the box class compute the
volume of the box and store the result in a double variable. Include a member function
called vol() that displays the volume of each box object.

2.3 INTRODUCING INHERITANCE

Although inheritance is discussed more fully in Chapter 7, it needs to be introduced at this
time. As it applies to C++, inheritance is the mechanism by which one class can inherit the
properties of another. Inheritance allows a hierarchy of classes to be built, moving from the
most general to the most specific.

To begin, it is necessary to define two terms commonly used when discussing inheritance. When
one class is inherited by another, the class that is inherited is called the base class. The inheriting
class is called the derived class. In general, the process of inheritance begins with the definition
of a base class. The base class defines all qualities that will be common to any derived classes.
In essence, the base class represents the most general description of a set of traits. A derived
class inherits those general traits and adds properties that are specific to that class.

42

INTRODUCING CLASSES
2.3. INTRODUCING INHERITANCE

To understand how one class can inherit another, let’s first begin with an example that, although
simple, illustrates many key features of inheritance.

To start, here is the declaration for the base class:

// Define base class.

class B

{

int i;

public:

void set_i(int n);

int get_i();

};

Using this base class, here is a derived class that inherits it:

// Define derived class.

class D : public B

{

int j;

public:

void set_j(int n);

int mul();

};

Look closely at this declaration. Notice that after the class name D there is a colon followed
by the keyword public and the class name B. This tells the compiler that class D will inherit
all components of class B. They keyword public tells the compiler that B will be inherited
such that all public elements of the base class will also be public elements of the derived class.
However, all private elements of the base class remain private to it and are not directly accessible
by the derived class.

Here is an entire program that uses the B and D classes:

// A simple example of inheritance.

#include <iostream >

using namespace std;

// Define base class.

class B

{

int i;

public:

void set_i(int n);

int get_i();

};

// Define derived class.

class D : public B

{

int j;

public:

void set_j(int n);

int mul();

};

43

TEACH YOURSELF
C++

// Set value i in base

void B:: set_i)int n)

{

i = n;

}

// Return value of i in base.

int B:: get_i()

{

return i;

}

// Set value of j in derived.

void D:: set_j(int n)

{

j = n

}

// Return value of base’s i times derived ’s j.

int::mul()

{

// derived class can call base class public member functions

return j * get_i ();

}

int main()

{

D ob;

ob.set_i (10); // load i in base

ob.set_j (4); // load j in derived

cout << ob.mul(); // displays 40

return 0;

}

Look at the definition of mul(). Notice that it calls get i(), which is a member of the base
class B, not of D, without linking it to any specific object. This is possible because the public
members of B become public members of D. However, the reason that mul() must call get i()
instead of accessing i directly is that the private members of a base class (in this case,i) remain
private to it and not accessible by any derived class. The reason that private members of a
class are not accessible to derived classes is to maintain encapsulation. If the private members
of a class could be made public simply by inheriting the class, encapsulation could be easily
circumvented.

The general form used to inherit a base class is shown here:

class derived_class_name : access_specifier base_class_name

Here access-specifier is one of the following three keywords: public, private, or protected.
For now, just use public when inheriting a class. A complete description of the access specifiers
will be given later in this book.

44

INTRODUCING CLASSES
2.3. INTRODUCING INHERITANCE

EXAMPLES
1. Here is a program that defines a generic base class called fruit that describes certain

characteristics of fruit. This class is inherited by two derived classes Apple and Orange.
These classes supply specific information to fruit that are related to these type of fruit.

// An example of class inheritance.

#include <iostream >

#include <cstring >

using namespace std;

enum yn {no , yes};

enum color {red , yellow , green , orange };

void out(enum yn x);

char *c[] = {"red", "yellow", "green", "orange"};

// Generic fruit class.

class fruit

{

// in this base , all elements are public

public:

enum yn annual;

enum yn perennial;

enum yn tree;

enum yn tropical;

enum color clr;

char name [40];

};

// Derive Apple class.

class Apple : public fruit

{

enum yn cooking;

enum yn crunchy;

enum yn eating;

public:

void seta(char *n, enum color c, enum yn ck , enum yn

crchy , enum yn e);

void show();

};

// Derive orange class.

class Orange : public fruit

{

enum yn juice;

enum yn sour;

enum yn eating;

public:

void seto(char *n, enum color c, enum yn j, enum yn sr ,

enum yn e);

void show();

45

TEACH YOURSELF
C++

};

void Apple::seta(char *n, enum color c, enum yn ck , enum yn

crchy , enum yn e)

{

strcpy(name , n);

annual = no;

perennial = yes;

tree = yes;

tropical = no;

clr = c;

cooking = ck;

crunchy = crchy;

eating = e;

}

void Orange ::seto(char *n, enum color c, enum yn j, enum yn

sr , enum yn e)

{

strcpy(name , n);

annual = no;

perennial = yes;

tree = yes;

tropical = yes;

clr = c;

juice = j;

sour = sr;

eating = e;

}

void Apple::show()

{

cout << name << " apple is: "<< "\n";

cout << "Annual: "; out(annual);

cout << "Perennial: "; out(perennial);

cout << "Tree: "; out(tree);

cout << "Tropical: "; out(tropical);

cout << "Color: " << c[clr] << "\n";

cout << "Good for cooking: "; out(cooking);

cout << "Crunchy: "; out(crunchy);

cout << "Good for eating: "; out(eating);

cout << "\n";

}

void Orange :: show()

{

cout << name << " orange is: " << "\n";

cout << "Annual: "; out(annual);

cout << "Perennial: "; out(perennial);

cout << "Tree: "; out(tree);

46

INTRODUCING CLASSES
2.3. INTRODUCING INHERITANCE

cout << "Tropical: "; out(tropical);

cout << "Color: " << c[clr] << "\n";

cout << "Good for juice: "; out(juice);

cout << "Sour: "; out(juice);

cout << "Good for eating: "; out(eating);

cout << "\n";

}

void out(enum yn x)

{

if(x==no)

cout << "no\n";

else

cout << "yes\n";

}

int main()

{

Apple a1, a2;

Orange o1, o2;

a1.seta("Red Delicious", red , no , yes , yes);

a2.seta("Jonathan", red , yes , no , yes);

o1.seto("Navel", orange , no , no , yes);

o2.seto("Valencia", orange , yes , yes , no);

a1.show();

a2.show();

o1.show();

o2.show();

return 0;

}

As you can see, the base class fruit defines several characteristics that are common to all
types of fruit. (Of course, in order to keep this example short enough to fit conveniently
in a book, the fruit class is somewhat simplified.) For example, all fruit grows on either
annual or perennial plants, such as vines or bushes. All fruit has a color and a name.
This base class is then inherited by the Apple and Orange classes. Each of these classes
supplies information specific to its type of fruit.

This example illustrates the basic reason for inheritance. Here, a base class is created
that defines the general traits associated with all fruit. It is left to the derived classes to
supply those traits that are specific to each individual case.

This program illustrates another important fact about inheritance. A base class is not
exclusively ”owned” by a derived class. A base class can be inherited by any number of
classes.

EXERCISE

1. Given the following base class,

47

TEACH YOURSELF
C++

class area_cl

{

public:

double height;

double width;

};

create two derived classes called rectangle and isosceles that inherit area cl. Have
each class include a function called area() that returns the area of a rectangle or isosceles
triangle, as appropriate. Use parameterized constructors to initialize height and width.

2.4 OBJECT POINTERS

So far, you have been accessing members of an object by using the dot operator, This is the
correct method when you are working with an object. However, it is also possible to access a
member of an object via pointer to that object. When a pointer is used, the arrow operator (-
>) rather than the dot operator is employed. (This is exactly the same way the arrow operator
is used when given a pointer to a structure.)

You declare an object pointer just like you declare a pointer to any other variable. Specify its
class name, and then precede the variable name with an asterisk. To obtain the address of an
object, precede the object with & operator, just as you do when taking the address of any other
type of variable.

Just like pointers to other types, an object pointer, when incremented, will point to the next
object of its type.

EXAMPLE

1. Here is a simple example that uses an object pointer:

#include <iostream >

using namespace std;

class myclass

{

int a;

public:

myclass(int x); // constructor

int get();

};

myclass :: myclass(int x)

{

a = x;

}

int myclass ::get()

{

return a;

}

int main()

{

48

INTRODUCING CLASSES
2.5. CLASSES, STRUCTURES, AND UNIONS ARE RELATED

myclass ob (120); // create object

myclass *p; // create pointer to object

p = &ob; // put address of ob into p

cout << "Value using object: " << ob.get();

cout << "\n";

cout << "Value using pointer: " << p->get();

return 0;

}

Notice how the declaration

myclass *p;

creates a pointer to an object of myclass. It is important to understand that creation of
an object pointer does not create an object-it creates just a pointer to one. The address
of ob is put into p by using this statement:

p = &ob;

Finally, the program shows how the members of an object can be accessed through a
pointer.

We will come back to the subject of object pointers in Chapter 4, once you know more
about C++. There are several special features that relate to them.

2.5 CLASSES, STRUCTURES, AND UNIONS ARE RELATED

As you have seen, the class is syntactically similar to the structure. You might be surprised to
learn, however, that the class and the structure have virtually identical capabilities. In C++,
the definition of structure has been expanded so that it can also include member functions,
including constructor and destructor functions, in just the same way that a class can. In fact,
the only difference between a structure and a class is that, by default, the members of a class
are private but the members of a structure are public. The expanded syntax of a structure is
shown here:

struct type_name

{

// public function and data members

private:

// private function and data members

} object_list;

In fact, according to the formal C++ syntax, both struct and class create new class types.
Notice that a new keyword is introduced. It is private, and it tells the compiler that follow are
private to that class.

On the surface, there is a seeming redundancy in the fact that structures and classes have
virtually identical capabilities. Many newcomers to C++ wonder why this apparent duplication
exists. In fact, it is not uncommon to hear the suggestion that the class keyword is unnecessary.

The answer to this line of reasoning has both a ”strong” and ”weak” form. The ”strong”
(or compelling) reason concerns maintaining upward compatibility from C. In C++, a C-style
structure is also perfectly acceptable in a C++ program. Since in C all structure members

49

TEACH YOURSELF
C++

are public by default, this convention is also maintained in C++. Further, because class is
a syntactically separate entity from struct, the definition of a class is free to evolve in a way
that will not be compatible with a C-like structure definition. Since the two are separated, the
future direction of C++ is not restricted by compatibility concerns.

The ”weak” reason for having two similar constructs is that there is no disadvantage to expand-
ing the definition of a structure in C++ to including member functions.

Although structures have the same capabilities as classes, most programmers restrict their use
of structures to adhere to their C-like form and do not use them to include function members.
Most programmers use the class keyword when defining objects that contain both data and
code. However, this is a stylistic matter and is subject to your own preference. (After this,
section, this book reserves the use of struct for objects that have no function members.)

If you find the connection between classes and structures interesting, so will you find this next
revelation about C++: unions and classes are also related. In C++, a union defines a class
type that can contain both functions and data as members. A union is like a structure in that,
by default, all members are public until the private specifier is used. In a union, however, all
data members share the same memory location (just as in C). Unions can contain constructor
and destructor functions. Fortunately, C unions are upwardly compatible with C++ unions.

Although structures and classes seem on the surface to be redundant, this is not the case with
unions. In an object-oriented language, it is important to preserve encapsulation. Thus, the
union’s ability to link code and data allows you to create class types in which all data uses a
shared location. This is something that you cannot do using a class.

There are several restrictions that apply to unions as they relate to C++. First, they cannot
inherit any other class and they cannot be used as a base class for any other type. Unions must
not have any static members. They also must not contain any object that has a constructor
or destructor. The union, itself, can have a constructor and destructor though. Finally, unions
cannot have virtual member functions. (Virtual functions are described later in this book.)

There is a special type of union in C++ called an anonymous union. An anonymous union
does not have a type name, and no variables can be declared for this sort of union. Instead,
an anonymous union tells the compiler that its members will share the same memory location.
However, in all other, respects, the members act and are treated like normal variables. That
is, the members are accessed directly, without the dot operator syntax. For example, examine
this fragment:

union // an anonymous union

{

int i;

char ch[4];

};

i = 10; // access i and ch directly

ch[0] = ’X’;

As you can see, i and ch are accessed directly because they are not part of any object. They
do, however, share the same memory space.

The reason for the anonymous union is that it gives you a simple way to tell the compiler that
you want two or more variables to share the same memory location. Aside from this special
attribute, members of an anonymous union behave like other variables.

Anonymous unions have all of the restrictions that apply to normal unions, plus these additions.
A global anonymous union must be declared static. An anonymous union cannot contain
private members, The names of the members of an anonymous union must not conflict with
other identifiers within the same scope.

50

INTRODUCING CLASSES
2.5. CLASSES, STRUCTURES, AND UNIONS ARE RELATED

EXAMPLES

1. Here is a short program that uses struct to create a class:

#include <iostream >

#include <cstring >

using namespace std;

// use struct to define a class type

struct st_type

{

st_type(double b, char *n);

void show();

private:

double balance;

char name [40];

};

st_type :: st_type(double b, char *n)

{

balance = b;

strcpy(name , n);

}

void st_type ::show()

{

cout << "Name: " << name;

cout << ": $" << balance;

if(balance <0.0)

cout << "**";

cout << "\n";

}

int main()

{

st_type acc1 (100.12 , "Johnson");

st_type acc2 (-12.34, "Hedricks");

acc1.show();

acc2.show();

return 0;

}

Notice that, as stated, the members of a structure are public by default. The private
keyword must be used to declare private members.

Also, notice one difference between C-like structures and C++-like structures. In C++,
the structure tag-name also becomes a complete type name that can be used to declare
objects. In C, the tag-name requires that the keyword struct precede it before it becomes
a complete type.

Here is the same program, rewritten using a class:

#include <iostraem >

51

TEACH YOURSELF
C++

#include <cstring >

using namespace std;

class cl_type

{

double balance;

char name [40];

public:

cl_type(double b, char *n);

void show();

};

cl_type :: cl_type(double b, char *n)

{

balance = b;

strcpy(name , n);

}

void cl_type ::show()

{

cout << "Name: " << name;

cout << ": $" << balance;

if(balance <0.0)

cout << "**";

cout << "\n";

}

int main()

{

cl_type acc1 (100.12 , "Johnson");

cl_type acc2 (-12.34, "Hedricks");

acc1.show();

acc2.show();

return 0;

}

2. Here is an example that used a union to display the binary bit pattern, byte by byte,
contained within a double value.

#include <iostream >

using namespace std;

union bits

{

bits(double n);

void show_bits ();

double d;

unsigned char c[sizeof(double)];

};

52

INTRODUCING CLASSES
2.5. CLASSES, STRUCTURES, AND UNIONS ARE RELATED

bits::bits(double n)

{

d = n;

}

void bits:: show_bits ()

{

int i, j;

for(j = sizeof(double) -1; j>=0; j--)

{

cout << "Bit pattern in byte " << j << ": ";

for(i = 128; i; i >>= 1)

if(i & c[j])

cout << "1";

else

cout << "0";

cout << "\n";

}

}

int main()

{

bits ob (1991.829);

ob.show_bits ();

return 0;

}

The output of this program is:

Bit pattern in byte 7: 01000000

Bit pattern in byte 6: 10011111

Bit pattern in byte 5: 00011111

Bit pattern in byte 4: 01010000

Bit pattern in byte 3: 11100101

Bit pattern in byte 2: 01100000

Bit pattern in byte 1: 01000001

Bit pattern in byte 0: 10001001

3. Both structures and unions can have constructors and destructors. The following example
shows the strtype class reworked as a structure. It contains both a constructor and a
destructor function.

#include <iostream >

#include <cstring >

#include <cstdlib >

53

TEACH YOURSELF
C++

using namespace std;

struct strtype

{

strtype(char *ptr);

~strtype ();

void show();

private:

char *p;

int len;

};

strype :: strype(char *ptr)

{

len = strlen(ptr);

p = (char *) malloc(len+1);

if(!p)

{

cout << "Allocation error\n";

exit (1);

}

strcpy(p, ptr);

}

strtype ::~ strtype ()

{

cout << "Freeing p\n";

free(p);

}

void strtype ::show()

{

cout << p << " - length: " << len;

cout << "\n";

}

int main()

{

strtype s1("This is a test."), s2("I like C++");

s1.show();

s2.show();

return 0;

}

This program uses an anonymous union to display the individual bytes that comprise a
double. (This program assumes that doubles are 8 bytes long.)

// Using an anonymous union.

#include <iostream >

using namespace std;

54

INTRODUCING CLASSES
2.6. IN-LINE FUNCTIONS

int main()

{

union

{

unsigned char bytes [8];

double value;

};

int i;

value = 859345.324;

// display the bytes within a double

for(i=0; i<8; i++)

cout << (int)bytes[i] << " ";

return 0;

}

As you can see, both value and bytes are accessed as if they were normal variables and
not part of a union. Even though they are declared as being part of an anonymous union,
their names are at the same scope level as any other local variable declared at the same
point. This is why a member of an anonymous union cannot have the same name as any
other variable known to its scope.

EXERCISES

1. Rewrite the stack class presented in Section 2.1 so it uses a structure rather than a class.

2. Use a union class to swap the low- and high-order bytes of an integer (assuming 16-bit
integers; if your computer uses 32-bit integers, swap the bytes of a short int).

3. Explain what an anonymous union is and how it differs from a normal union.

2.6 IN-LINE FUNCTIONS

Before we continue this examination of classes, a short but related digression is needed. In
C++, it is possible to define functions that are not actually called but, rather, are expanded in
line, at the point of each call. This is much the same way that a C-like parameterized macro
works. The advantage if in-line functions is that they have no overhead associated with the
function call and return mechanism. This means that in-line functions can be executed much
faster than normal functions. (Remember, the machine instructions that generate the function
call and return take time each time a function is called. If there are parameters, even more time
overhead is generated.)

The disadvantages of in-line function is that if they are too large and called too often, your
program grows larger. For this reason, in general only short functions are declared as in-line
functions.

To declare an in-line function, simply precede the function’s definition with the inline specifier.
For example, this short program shows how to declare an in-line function:

// Example of an in-line function

#include <iostream >

using namespace std;

55

TEACH YOURSELF
C++

inline int even(int x)

{

return !(x%2);

}

int main()

{

if(even (10))

cout << "10 is even\n";

if(even (11))

cout << "11 is even\n";

return 0;

|

In this example, the function even(), which returns true if its argument is even, is declared as
being-in-line. This means that the line

if(even (10))

cout << "10 is even\n";

is functionally equivalent to:

if(!(10 @2))

cout << "10 is even\n";

This example also points out another important feature of using inline: an in-line function
must be defined before it is first called. If it isn’t, the compiler has no way to know that it is
supposed to be expanded in-line. This is why even() was defined before main().

The advantages of using inline rather than parameterized macros is twofold. First, it provides
a more structured way to expand short functions in line. For example, when you are creating
a parameterized macro, it is easy to forget that extra parentheses are often needed to ensure
proper in-line expansion in every case. Using in-line functions prevents such problems.

Second, an in-line function might be able to be optimized more thoroughly by the compiler
than a macro expansion. In any event, C++ programmers virtually never use parameterized
macros, instead relying on inline to avoid the overhead of a function call associated with a
short function.

It is important to understand that the inline specifier is a request, not a command, to the
compiler. If, for various reason, the compiler is unable to fulfill the request, the function is
compiled as a normal function and the inline request is ignored.

Depending upon your compiler, several restrictions to in-line functions may apply. For example,
some compilers will not in-line a function if it contains a static variable, a loop statement, a
switch or a goto, or if the function is recursive. You should check your compiler’s user manual
for specific restrictions to in-line functions that might affect you.

Remember: If any in-line restriction is violated, the compiler is free to generate a normal
function.

EXAMPLES

1. Any type of function can be in-lined, including functions that are member of classes.
For example, here the member function divisible() is in-lined for fast execution. (The
function returns true if its first argument can be evenly divided by its second.)

56

INTRODUCING CLASSES
2.6. IN-LINE FUNCTIONS

// Demonstrate in -lining a member function.

#include <iostream >

using namespace std;

class samp

{

int i, j;

public:

samp(int a, int b);

int divisible (); // in -lined in its definition

};

samp::samp(int a, int b)

{

i = a;

j = b;

}

/*

Return 1 if i is evenly divisible by j.

This member function is expanded in line.

*/

inline int samp:: divisible ()

{

return !(i%j);

}

int main()

{

samp ob1(10, 2), ob2(10, 3);

// this is true

if(ob1.divisible ())

cout << "10 divisible by 2\n";

// this is false

if(ob2.divisible ())

cout << "10 divisible by 3\n";

return 0;

}

2. It is perfectly permissible to in-line an overloaded function. For example, this program
overloads min() three ways. Each way is also declared as inline.

#include <iostream >

using namespace std;

// Overload min() three ways.

// integers

inline int min(int a, int b)

57

TEACH YOURSELF
C++

{

return a<b ? a : b;

}

// longs

inline long min(long a, long b)

{

return a<b ? a : b;

}

// doubles

inline double min(double a, double b)

{

return a<b ? a : b;

}

int main()

{

cout << min(-10, 10) << "\n";

cout << min(-10.0, 100.002) << "\n";

cout << min(-10L, 12L) << "\n";

return 0;

}

EXERCISES

1. In Chapter 1 you overloaded the abs() function so that it could find the absolute value
of integers, long integers, and doubles. Modify that program so that those functions are
expanded in line.

2. Why might the following function not be in-lined by your compiler?

void f1()

{

int i;

for(i=0; i<10; i++)

cout << i;

}

2.7 AUTOMATIC IN-LINING

If a member function’s definition is short enough, the definition can be included inside the
class declaration. Doing so causes the function to automatically become an in-line function, if
possible. When a function is defined within a class declaration, the inline keyword is no longer
necessary. (However, it is not an error to use it in this situation.) For example, the divisible()
function from the preceding section can be automatically in-lined as shown here:

#include <iostream >

using namespace std;

58

INTRODUCING CLASSES
2.7. AUTOMATIC IN-LINING

class samp

{

int i, j;

public:

samp(int a, int b);

/*

divisible () is defined here and automatically

in -lined.

*/

int divisible () { return !(i%j);}

};

samp::samp(int a, int b)

{

i = a;

j = b;

}

int main()

{

samp ob1(10, 2), ob2(10, 3);

// this is true

if(ob1.divisible ())

cout << "10 divisible by 2\n";

// this is false

if(ob2.divisible ())

cout << "10 divisible by 3\n";

return 0;

}

As you can see, the code associated with divisible() occurs inside the declaration for the class
samp. Further notice that no other definition of divisible() is needed-or permitted. Defining
divisible() inside samp causes it to be made into an in-line function automatically.
When a function defined inside a class declaration cannot be made into an in-line function
(because a restriction has been violated), it is automatically made into a regular function.
Notice how divisible() is defined within samp, paying particular attention to the body. It
occurs all on one line. This format is very common in C++ programs when a function is
declared within a class declaration. It allows the declaration to be more compact. However, the
samp class could have been written like this:

class samp

{

int i, j;

public:

samp(int a, int b);

/*

divisible () is defined here and automatically in-lined.

*/

59

TEACH YOURSELF
C++

int divisible ()

{

return !(i%j);

}

};

In this version, the layout of divisible() uses the more-or-less standard indentation style. From
the compiler’s point of view, there is no difference between the compact style is commonly found
in C++ programs when short functions are defined inside a class definition.

The same restrictions that apply to ”normal” in-line functions apply to automatic in-line func-
tions within a class declaration.

EXAMPLES

1. Perhaps the most common use of in-line functions defined within a class is to define
constructor and destructor functions. For example, the sampclass can more efficiently be
defined like this:

#include <iostream >

using namespace std;

class samp

{

int i, j;

public:

// inline constructor

samp(int a, int b) { i = a; j = b; }

int divisible () { return !(i%j); }

};

The definition of samp() within the class samp is sufficient, and no other definition of
samp() is needed.

2. Sometimes a short function will be included in a class declaration even though the auto-
matic in-lining feature is of little or no value. Consider this class declaration:

class myclass

{

int i;

public:

myclass(int n) { i = n; }

void show() { cout << i; }

};

Here the function show() is made into an in-line function automatically. However, as you
should know, I/O operations are (generally) so slow relative to CPU/memory operations
that any effect of eliminating the function call overhead is essentially lost. Even so, in
C++ programs, it is still common to see small functions of this type declared within a
class simply for the sake of convenience, and because no harm is caused.

EXERCISES

1. Convert the stack class from Section 2.1, Example 1, so that it uses automatic in-line
functions where appropriate.

60

INTRODUCING CLASSES
SKILLS CHECK

2. Convert the strtype class from Section 2.2, Example 3, so that it uses automatic in-line
functions.

SKILLS CHECK

Mastery Skills Check

At this point you should be able to perform the following exercises and answer the questions.

1. What is a constructor? What is a destructor? When are they executed?

2. Create a class called line that draws a line on the screen. Store the line length in a private
integer variable called len. Have line’s constructor take one parameter: the line length.
Have the constructor store the length and actually draw the line. If your system does not
support graphics, display the line by using *.
Optional: Give linea destructor that erases the line.

3. What does the following program display?

#include <iostream >

using namespace std;

int main()

{

int i = 10;

long l = 1000000;

double d = -0.0009;

cout << i << ’ ’ << l << ’ ’ << d;

cout << "\n";

return 0;

}

4. Add another derived class that inherits area cl from Section 2.3, Exercise 1. Call this
class cylinder and have it compute the surface area of a cylinder. Hint: The surface area
of a cylinder is: 2 ∗ π ∗R2 + π ∗D ∗ height.

5. What is an in-line function? What are its advantages and disadvantages?

6. Modify the following program so that all member functions are automatically in-lined:

#include <iostream >

using namespace std;

class myclass

{

int i, j;

public:

myclass(int x, int y);

void show();

};

myclass :: myclass(int x, int y)

61

TEACH YOURSELF
C++

{

i = x;

j = y;

}

void myclass ::show()

{

cout << i << " " << j << "\n";

}

int main()

{

myclass count(2, 3);

count.show();

return 0;

}

7. What is the difference between a class and a structure?

8. Is the following fragment valid?

union

{

float f;

unsigned int bits;

};

Cumulative Skills Check

This section checks how well you have integrated material in this chapter with that from the
preceding chapter.

1. Create a class called prompt. Pass its constructor function a prompting string of your
own choosing. Have the constructor display the string and then input an integer. Have
the constructor display the string and then input an integer. Store this value in a private
variable called count. When an object of type prompt is destroyed, ring the bell on the
terminal as many times as the user entered.

2. In Chapter 1 you created a program that converted feet to inches. Now create a class that
does the same thing. Have the class store the number of feet and its equivalent number of
inches. Pass to the class’s constructor the number of feet and have the constructor display
the number of inches.

3. Create a class called dice that contains one private integer variable. Create a function
called roll() that uses the standard random number generator, rand(), to generate a
number between 1 and 6. Then have roll() display that value.

62

3
A Closer Look at Classes

Chapter Objectives

3.1 Assigning objects

3.2 Passing objects to functions

3.3 Returning objects from functions

3.4 An Introduction to friend functions

63

TEACH YOURSELF
C++

In this chapter you continue to explore the class. You will learn about assigning objects,
passing objects to functions, and returning objects from functions. You will also learn about

an important new type of function: the friend.

Review Skills Check

Before proceeding, you should be able to correctly answer the following questions and do the
exercises.

1. Given the following class, what are the names of its constructor and destructor functions?

class widgit

{

int x, y;

public:

// ... fill in constructor and destructor functions

};

2. When is a constructor function called? When is a destructor function called?

3. Given the following base class, show how it can be inherited by a derived class called
Mars.

class planet

{

int moons;

double dis_from_sun;

double diameter;

double mass;

public:

// ...

};

4. There are two ways to cause a function to be expanded in line. What are they?

5. Give two possible restrictions to in-line functions.

6. Given the following class, show how an object called ob that passes the value 100 to a
and X to c would be declared.

class sample

{

int a;

char c;

public:

sample(int x, char ch) { a = x; c = ch; }

// ...

};

3.1 ASSIGNING OBJECTS

One object can be assigned to another provided that both objects are of the same type. By
default, when one object is assigned to another, a bitwise copy of all the data members is
made. For example, the contents of object called o1 is assigned to another object called o2, the

64

A CLOSER LOOK AT CLASSES
3.1. ASSIGNING OBJECTS

contents of all of o1’s data are copied into the equivalent members of o2. This is illustrated by
the following program:

// An example of object assignment.

#include <iostream >

using namespace std;

class myclass

{

int a, b;

public:

void set(int i, int j) { a = i; b = j; }

void show() { cout << a << ’ ’ << b << "\n"; }

};

int main()

{

myclass o1 , o2;

o1.set(10, 4);

// assign o1 to o2

o2 = o1;

o1.show();

o2.show();

return 0;

}

Here, object o1 has its member variables a and b set to the values 10 and 4, respectively. Next,
o1 is assigned to o2. This causes the current value of o1.a to be assigned to o2.a and o1.b to
be assigned to o2.b. Thus, when run, this program displays

10 4
10 4
Keep in mind that an assignment between two objects simply makes the data in those objects
identical. The two objects are still completely separate, For example, after the assignment,
calling o1.set() to set the value of o1.a has no effect on o2 or its a value.

EXAMPLES

1. Only objects of the same type can be used in an assignment statement. If the objects are
not of the same type, a compile-time error is reported. Further, it is not sufficient that
the types just be physically similar-their type names must be the same. For example, this
is not a valid program:

// This program has an error.

#include <iostream >

using namespace std;

class myclass

{

int a, b;

65

TEACH YOURSELF
C++

public:

void set(int i, int j) { a = i; b = j; }

void show() { cout << a << ’ ’ << b << "\n"; }

};

/*

This class is similar to myclass but uses a

different class name and thus appears as a different

type to the compiler.

*/

class yourclass

{

int a, b;

public:

void set(int i, int j) { a = i; b = j; }

void show() { cout << a << ’ ’ << b << "\n"; }

};

int main()

{

myclass o1;

yourclass o2;

o1.set(10, 4);

o2 = o1; // ERROR , objects not of same type

o1.show();

o2.show();

return 0;

}

In this case, even though myclass and yourclass are physically the same, because they
have different type names, they are treated as differing types by the compiler.

2. It is important to understand that all data members of one object are assigned to another
when an assignment is performed. This includes compound data such as arrays. For
example, in the following version of the stack example, only s1 has any characters actually
pushed onto it. However, because of the assignment, s2’s stck array will also contain the
characters a, b, and c.

#include <iostream >

using namespace std;

#define SIZE 10

// Declare a stack class for characters.

class stack

{

char stck[SIZE]; // holds the stack

int tos; // index of top of stack

public:

66

A CLOSER LOOK AT CLASSES
3.1. ASSIGNING OBJECTS

stack (); // push character on stack

char pop(); // pop character from stack

};

// Initialize the stack.

stack ::stack ()

{

cout << "Constructing a stack\n";

tos = 0;

}

// Push a character.

void stack::push(char ch)

{

if(tos==SIZE)

{

cout << "Stack is full\n";

return;

}

stck[tos] = ch;

tos ++;

}

// Pop a character.

char stack::pop()

{

if(tos ==0)

{

cout << "Stack is empty\n";

return 0; // return null on empty stack

}

tos --;

return stck[tos];

}

int main()

{ // Create two stacks that are automatically initialized.

stack s1, s2;

int i;

s1.push(’a’);

s1.push(’b’);

s1.push(’c’);

// clone s1

s2 = s1; // now s1 and s2 are identical

for(i=0; i<3; i++)

cout << "Pop s1: " << s1.pop() << "\n";

for(i=0; i<3;i++)

67

TEACH YOURSELF
C++

cout << "Pop s2: " << s2.pop() << "\n";

return 0;

}

3. You must exercise some care when assigning one object to another. For example, here is
the strtype class developed in Chapter 2, along with a short main(). See if you can find
an error in this program.

#include <iostream >

#include <cstring >

#include <cstdlib >

using namespace std;

class strtype

{

char *p;

int len;

public:

strtype(char *ptr);

~strtype ();

void show();

};

strtype :: strtype(char *ptr)

{

len = strlen(ptr);

p = (char *) malloc(len+1);

if(!p)

{

cout << "Allocation error\n";

exit (1);

}

strcpy(p, ptr);

}

strtype ::~ strtype ()

{

cout << "Freeing p\n";

free(p);

}

void strtype ::show()

{

cout << p << " - length: " << len;

cout << "\n";

}

int main()

{

strtype s1("This is a test."), s2("I like C++.");

68

A CLOSER LOOK AT CLASSES
3.1. ASSIGNING OBJECTS

s1.show();

s2.show();

// assign s1 to s2 - - this generates an error

s2 = s1;

s1.show();

s2.show();

return 0;

}

The trouble with this program is quite insidious. When s1 and s2 are created, both
allocate memory to hold their respective strings. A pointer to each object’s allocated
memory is stored in p. When a strtype object is destroyed, this memory is released.
However, when s1 is assigned to s2, s2’s p now points to the same memory as s1’s p.
Thus, when these objects are destroyed, the memory pointed to by s2’s p is freed twice
and the memory originally pointed to by s2’s p is not freed at all.

While benign in this context, this sort of problem occurring in a real program will cause
the dynamic allocation system to fail, and possibly even cause a program crash. As you
can see from the preceding example, when assigning one object to another, you must make
sure you are not destroying information that may be needed later.

EXERCISES

1. What is wrong with the following program?

// This program has an error.

#include <iostream >

using namespace std;

class cl1

{

int i, j;

public:

cl1(int a, int b) { i = a; j = b; }

// ...

};

class cl2

{

int i, j;

public:

cl2(int a, int b) { i = a; j = b; }

// ...

};

int main()

{

cl1 x(10, 20);

cl2 y(0, 0);

x = y;

69

TEACH YOURSELF
C++

// ...

}

2. Using the queue class that you created for Chapter 2, Section 2.1, Exercise 1, show how
one queue can be assigned to another.

3. If the queue class from the preceding question dynamically allocates memory to hold the
queue, why, in this situation, can one queue not be assigned to another?

3.2 PASSING OBJECTS TO FUNCTIONS

Objects can be passed to functions as arguments in just the same way that other types of data
are passed. Simply declare the function’s parameter as a class type and then use an object of
that class as an argument when calling the function. As with other types of data, by default
all objects are passed by value to a function.

EXAMPLES

1. Here is a short example that passes an object to a function:

#include <iostream >

using namespace std;

class samp

{

int i;

public:

samp(int n) { i = n; }

int get_i() { return i; }

};

// Return square of o.i.

int sqr_it(samp o)

{

return o.get_i () * o.get_i ();

}

int main()

{

samp a(10), b(2);

cout << sqr_it(a) << "\n";

cout << sqr_it(b) << "\n";

return 0;

}

This program creates a class called samp that contains one integer variable called i. The
function sqr it() takes an argument of type samp and returns the square of that object’s
i value. The output from this program is 100 followed by 4.

70

A CLOSER LOOK AT CLASSES
3.2. PASSING OBJECTS TO FUNCTIONS

2. As stated, the default method of parameter passing in C++, including objects, is by value.
This means that a bitwise copy of the argument is made and it is this copy that is used
by the function. Therefore, changes to the object inside the function do not affect the
calling object. This is illustrated by the following example:

/*

Remember , objects , like other parameters , are passed

by value. Thus changes to the parameter inside a

function have no effect on the object used in the call.

*/

#include <iostream >

using namespace std;

class samp

{

int i;

public:

samp(int n) { i = n; }

void set_i(int n) { i = n; }

int get_i() { return i; }

};

/*

Set o.i to its square. This has no effect on the

object used to call sqr_it (), however.

*/

void sqr_it(samp o)

{

o.set_i(o.get_i () * o.get_i ());

cout << "Copy of a has i value of " << o.get_i();

}

int main()

{

samp a(10);

sqr_it(a); // a passed by value

cout << "But , a.i is unchanged in main: ";

cout << a.get_i(); // displays 10

return 0;

}

The output displayed by this program is:

Copy of a has i value of 100

But, a.i is unchanged in main: 10

3. As with other types of variables, the address of an object can be passed to a function so
that the argument used in the call can be modified by the function. For example, the

71

TEACH YOURSELF
C++

following version of the program in the preceding example does, indeed, modify the value
of the object whose address is used in the call to sqr it().

/*

Now that the address of an object is passed to sqr_it (),

the function can modify the value of the argument whose

address is used in the call.

*/

#include <iostream >

using namespace std;

class samp

{

int i;

public:

samp(int n) { i = n; }

void set_i(int n) { i = n; }

int get_i() { return i; }

};

/*

Set o.i to its square. This affects the calling

argument.

*/

void sqr_it(samp *o)

{

o->set_i(o->get_i () * o->get_i ());

cout << "Copy of a has i value of " << o->get_i();

cout << "\n";

}

int main()

{

samp a(10);

sqr_it (&a); // pass a’s address of sqr_it ()

cout << "Now , a in main() has been changed: ";

cout << a.get_i(); // displays 100

return 0;

}

This program now displays the following output:

Copy of a has i value of 100

Now, a.i in main() has been changed: 100

4. When a copy of an object is made when being passed to a function, it means that a
new object comes into existence. Also, when the function that the object was passed to
terminates, the copy of the argument is destroyed. This raises two questions. First, is
the object’s constructor called when the copy is made? Second, is the object’s destructor
called when the copy is destroyed? The answer may, at first, seem surprising.

72

A CLOSER LOOK AT CLASSES
3.2. PASSING OBJECTS TO FUNCTIONS

When a copy of an object is made to be used in a function call, the constructor function
is not called. The reason for this is simple to understand if you think about it. Since a
constructor function is generally used to initialize some aspect of an object, it must not
be called when making a copy of an already existing object passed to a function. Doing
so would alter the contents of the object. When passing an object to a function, you want
the current state of the object, not its initial state.

However, when the function terminates and the copy is destroyed, the destructor function
is called. This is because the object might perform some operation that must be undone
when it goes out of scope. For example, the copy may allocate memory that must be
released.

To summarize, when a copy of an object is created because it is used as an argument to
a function, the constructor function is not called. However, when the copy is destroyed
(usually by going out of scope when the function returns), the destructor function is called.

The following program illustrates the preceding discussion:

#include <iostream >

using namespace std;

class samp

{

int i;

public:

samp(int n)

{

i = n;

cout << "Constructing\n";

}

~samp() { cout << "Destructing\n"; }

int get_i() { return i; }

};

// Return square of o.i.

int sqr_it(samp o)

{

return o.get_i () * o.get_i ();

}

int main()

{

samp a(10);

cout << sqr_it(a) << "\n";

return 0;

}

This function displays the following:

Constructing

Destructing

100

73

TEACH YOURSELF
C++

Destructing

As you can see, only one call to the constructor function is made. This occurs when a is
created. However, two calls to the destructor are made. One is for the copy created when
a is passed to sqr it(). The other is for a itself.

The fact that the destructor for the object that is the copy of the argument is executed
when the function terminates can be a source of problems. For example, if the object used
as the argument allocates dynamic memory and frees that memory when destroyed, its
copy will free the same memory when its destructor is called. This will leave the original
object damaged and effectively useless. (See Exercise 2, just ahead in this section, for
an example.) It is important to guard against this type of error and to make sure that
the destructor function of the copy of an object used in an argument does not cause side
effects that alter the original argument.

As you might guess, one way around the problem of a parameter’s destructor function
destroying data needed by the calling argument is to pass the address of the object and
not the object itself. When an address is passed, no new object is created, and therefore,
no destructor is called when the function returns. (As you will see in the next chapter,
C++ provides a variation on this theme that offers a very elegant alternative.) However,
an even better solution exists, which you can use after you have learned about a special
type of constructor called a copy constructor. A copy constructor lets you define precisely
how copies of objects are made. (Copy constructors are discussed in Chapter 5.)

EXERCISES

1. Using the stack example from Section 3.1, Example 2, add a function called showstack()
that is passed an object of type stack. Have this function display the contents of a stack.

2. As you know, when an object is passed to a function, a copy of that object is made.
Further, when that function returns, the copy’s destructor function is called. Keeping
this in mind, what is wrong with the following program?

// This program contains an error.

#include <iostream >

#include <cstdlib >

using namespace std;

class dyna

{

int *p;

public:

dyna(int i);

~dyna() { free(p); cout << "freeing \n"; }

int get() { return *p; }

};

dyna::dyna(int i)

{

p = (int *) malloc(sizeof(int));

if(!p)

{

cout << "Allocation failure\n";

exit (1);

74

A CLOSER LOOK AT CLASSES
3.3. RETURNING OBJECTS FROM FUNCTIONS

}

*p = i;

}

// Return negative value of *ob.p

int neg(dyna ob)

{

return -ob.get();

}

int main()

{

dyna o(-10);

cout << o.get() << "\n";

cout << neg(o) << "\n";

dyna o2(20);

cout << o2.get() << "\n";

cout << neg(o2) << "\n";

cout << o.get() << "\n";

cout << neg(o) << "\n";

return 0;

}

3.3 RETURNING OBJECTS FROM FUNCTIONS

Just as you can pass objects to functions, functions can return objects. To do so, first declare
the function as returning a class type. Second, return an object of that type using the normal
return statement.

There is one important point to understand about returning objects from functions, however:
When an object is returned by a function, a temporary object is automatically created which
holds the return value. It is this object that is actually returned by the function. After the
value has been returned, this object is destroyed. The destruction of this temporary object
might cause unexpected side effects in some situations, as is illustrated in Example 2 below.

EXAMPLES

1. Here is an example of a function that returns an object:

// Returning an object

#include <iostream >

#include <cstring >

using namespace std;

class samp

{

char s[80];

75

TEACH YOURSELF
C++

public:

void show() { cout << s << "\n"; }

void set(char *str) { strcpy(s, str); }

};

// Return an object of type samp

samp input()

{

char s[80];

samp str;

cout << "Enter a string: ";

cin >> s;

str.set(s);

return str;

}

int main()

{

samp ob;

// assign returned object to ob

ob = input();

ob.show();

return 0;

}

In this example, input() creates a local object called str and then reads a string from the
keyboard. This string is copied into str.s and then str is returned by the function. This
object is then assigned to ob inside main() when it is returned by the call to input().

2. You must be careful about returning objects from functions if those objects contain de-
structor functions because the returned object goes out of scope as soon as the value is
returned to the calling routine. For example, if the object returned by the function has
a destructor that frees dynamically allocated memory, that memory will be freed even
though the object that is assigned the return value is still using it. For example, consider
this incorrect version of the preceding program:

// An error generated by returning an object.

#include <iostream >

#include <cstring >

#include <cstdlib >

using namespace std;

class samp

{

char *s;

public:

samp() { s = ’\0’; }

~samp() { if(s) free(s); cout << "Freeing s\n"; }

76

A CLOSER LOOK AT CLASSES
3.3. RETURNING OBJECTS FROM FUNCTIONS

void show() { cout << s << "\n"; }

void set(char *str);

};

// Load a string.

void samp::set(char *str)

{

s = (char *) malloc(strlen(str)+1);

if(!s)

{

cout << "Allocation error\n";

exit (1);

}

strcpy(s, str);

}

// Return an object of type samp

samp input()

{

char s[80];

samp str;

cout << "Enter a string: ";

cin >> s;

str.set(s);

return str;

}

int main()

{

samp ob;

// assign returned object to ob

ob = input(); // This causes an error !!!!

ob.show();

return 0;

}

The output from this program is shown here:

Enter a string: Hello

Freeing s

Freeing s

Hello

Freeing s

Null pointer assignment

77

TEACH YOURSELF
C++

Notice that samp’s destructor function is called three times. First, it is called when the
local object str goes out of scope when input() returns. The second time ∼samp()
is called is when the temporary object returned by input() is destroyed. Remember,
when a n object is returned from a function, an invisible (to you) temporary object
is automatically generated which holds the return value. In this case, this object is
simply a copy of str, which is the return value of the function. Therefore, destructor is
executed. Finally, the destructor for object ob, inside main(), is called when the program
terminates.

The trouble is that in this situation, the first time the destructor executes, the memory
allocated to hold the string input by input() is freed. Thus, not only do the other two
calls to samp’s destructor try to free an already released piece of dynamic memory, but
they destroy the dynamic allocation system in the process, as evidenced by the run-time
message ”Null pointer assignment.” (Depending upon your compiler, the memory model
used for compilation, and the like, you may or may not see this message if you try this
program.)

The key point to be understood from this example is that when an object is returned from
a function, the temporary object used to effect the return will have its destructor func-
tion called. Thus, you should avoid returning objects in which this situation is harmful.
(As you will learn in Chapter 5, it is possible to use a copy constructor to manage this
situation.)

EXERCISES

1. To illustrate exactly when an object is constructed and destructed when returned from a
function, create a class called who. Have who’s constructor take one character argument
that will be used to identify an object. Have the constructor display a message similar to
this when constructing an object:

Constructing who #x

where x is the identifying character associated with each object. When an object is
destroyed, have a message similar to this displayed:

Destroying who #x

where, again, x is the identifying character. Finally, create a function called make who()
that returns a who object. Give each object a unique name. Note the output displayed
by the program.

2. Other than the incorrect freeing of dynamically allocated memory, think of a situation in
which it would be improper to return an object from a function.

3.4 AN INTRODUCTION TO FRIEND FUNCTIONS

There will be times when you want a function to have access to the private members of a class
without that function actually being a member of that class. Towards this end, C++ supports
friend functions. A friend is not a member of a class but still has access to its private elements.

Two reasons that friend functions are useful have to do with operator overloading and the
creation of certain types of I/O functions. You will have to wait until later to see these uses of
a friend in action. However, a third reason for friend functions is that there will be times when
you want one function to have access to the private members of two or more different classes.
It is this use that is examined here.

78

A CLOSER LOOK AT CLASSES
3.4. AN INTRODUCTION TO FRIEND FUNCTIONS

A friend function is defined as a regular, nonmember function. However, inside the class dec-
laration for which it will be a friend, its prototype is also included, prefaced by the keyword
friend. To understand how this works, examine this short program:

// An example of a friend function.

#include <iostream >

using namespace std;

class myclass

{

int n, d;

public:

myclass(int i, int j) { n = i; d = j; }

// declare a friend of myclass

friend int isfactor(myclass ob);

};

/*

Here is friend function definition. It returns true

if d is a factor of n. Notice that the keyword friend is not

used in the definition of isfactor ()

*/

int isfactor(myclass ob)

{

if(!(ob.n % ob.d))

return 1;

else

return 0;

}

int main()

{

myclass ob1(10, 2), ob2(13, 3);

if(isfactor(ob1))

cout << "2 is a factor of 10\n";

else

cout << "2 is not a factor of 10\n";

if(isfactor(ob2))

cout << "3 is a factor of 13\n";

else

cout << "3 is not a factor of 13\n";

return 0;

}

In this example, myclass declares its constructor function and the friend isfactor() inside its
class declaration. Because isfactor() is a friend of myclass, isfactor() has access to its private
members. This is why, within isfactor(), it is possible to directly refer to ob.n and ob.d.
It is important to understand that a friend function is not a member of the class for which it is
a friend. Thus, it is not possible to call a friend function by using an object name and a class
member access operator (a dot or an arrow). For example, given the preceding example, this

79

TEACH YOURSELF
C++

statement is wrong:

ob1.isfactor (); // wrong; isfactor () is not a member function

Instead, friends are called just like regular functions.

Although a friend function has knowledge of the private elements of the class for which it is
a friend, it can only access them through an object of the class. That is, unlike a member
function of myclass, which can refer to n or d directly, a friend can access these variables only
in conjunction with an object that is declared within or passed to the friend function.

Note: The preceding paragraph brings up an important side issue. When a member function
refers to a private element, it does not directly because a member function is executed only in
conjunction with an object of that class. Thus, when a member function refers to a private
element, the compiler knows which object that private element belongs to by the object that is
linked to the function when that member function is called. However a friend function is not
linked to any object. It simply is granted access to the private elements of a class. Thus, inside
the friend function, it is meaningless to refer to a private member without reference to a specific
object.

Because friends are not members of a class, they will typically be passed one or more objects
of the class for which they are friends. This is the case with isfactor(). It is passed an object
of myclass, called ob. However, because isfactor() is a friend of myclass, it can access ob’s
private elements. If isfactor() had not been made a friend of myclass, it would not be able
to access ob.d or ob.n since n and d are private members of myclass.

Remember: A friend function is not a member and cannot be qualified by an object name. It
must be called just like a normal function.

A friend function is not inherited. That is, when a base class includes a friend function, that
friend function is not a friend of a derived class.

One other important point about friend functions is that a friend function can be friends with
more than one class.

EXAMPLES

1. One common (and good) use of a friend function occurs when two different types of
classes have some quantity in common that needs to be compared. For example, consider
the following program, which creates a class called car and a class called truck, each
containing, as a private variable, the speed of the vehicle it represents:

#include <iostream >

using namespace std;

class truck; // a forward declaration

class car

{

int passengers;

int speed;

public:

car(int p, int s) { passengers = p; speed = s; }

friend int sp_greater(car c, truck t);

};

class truck

{

int weight;

80

A CLOSER LOOK AT CLASSES
3.4. AN INTRODUCTION TO FRIEND FUNCTIONS

int speed;

public:

truck(int w, int s) { weight = w; speed = s; }

friend int sp_greater(car c, truck t);

};

/*

Return positive if car speed faster than truck.

Return 0 if speeds are the same.

Return negative if truck speed faster than car.

*/

int sp_greater(car c, truck t)

{

return c.speed - t.speed;

}

int main()

{

int t;

car c1(6, 55), c2(2, 120);

truck t1(10000 , 55), t2(20000 , 72);

cout << "Comparing c1 and t1:\n";

t = sp_greater(c1, t1);

if(t<0)

cout << "Truck is faster .\n";

else if(t==0)

cout << "Car and truck speed is the same.\n";

else

cout << "Car is faster .\n";

cout << "Comparing c2 and t2:\n";

t = sp_greater(c2, t2);

if(t<0)

cout << "Truck is faster .\n";

else if(t==0)

cout << "Car and truck speed is the same.\n";

else

cout << "Car is faster .\n";

return 0;

}

This program contains the function sp greater(), which is a friend function of both the
car and truck classes. (As stated, a function can be a friend of two or more classes.)
This function returns positive if the car object is going faster than the truck object, 0 if
their speeds are the same, and negative if the truck is going faster.

This program illustrates one important C++ syntax element the forward declaration (also
called forward reference. Because sp greater() takes parameters of both the car and the
truck classes, it is logically impossible to declare both before including sp greater() in
either. Therefore, there needs to be some way to tell the compiler about a class name

81

TEACH YOURSELF
C++

without actually declaring it. This is called a forward declaration. In C++, to tell the
compiler that an identifier is the name of a class, use a line like this before the class name
is first used:

class class_name;

For example, in the preceding program, the forward declaration is:

class truck;

Now truck can be used in the friend declaration of sp greater() without generating a
compile-time error.

2. A function can be a member of one class and a friend of another. For example, here is
the preceding example rewritten so that sp greater is a member of car and a friend of
truck:

#include <iostream >

using namespace std;

class truck; // a forward declaration

class car

{

int passengers;

int speed;

public:

car(int p, int s) { passengers = p; speed = s; }

int sp_greater(truck t);

};

class truck

{

int weight;

int speed;

public:

truck(int w, int s) { weight = w; speed = s; }

// note new use of the scope resolution operator

friend int car:: sp_greater(truck t);

};

/*

Return positive if car speed faster than truck.

Return 0 if speeds are the same.

Return negative if truck speed faster than car.

*/

int car:: sp_greater(truck t)

{

/*

Since sp_greater () is member of car , only a

truck object must be passed to it.

*/

return speed - t.speed;

82

A CLOSER LOOK AT CLASSES
3.4. AN INTRODUCTION TO FRIEND FUNCTIONS

}

int main()

{

int t;

car c1(6, 55), c2(2, 120);

truck t1(10000 , 55), t2(20000 , 72);

cout << "Comparing c1 and t1:\n";

t = c1.sp_greater(t1); // evoke as member function of car

if(t<0)

cout << "Truck is faster .\n";

else if(t==0)

cout << "Car and truck speed is the same.\n";

else

cout << "Car is faster .\n";

cout << "Comparing c2 and t2:\n";

t = c2.sp_greater(t2); // evoke as member function of car

if(t<0)

cout << "Truck is faster .\n";

else if(t==0)

cout << "Car and truck speed is the same.\n";

else

cout << "Car is faster .\n";

return 0;

}

Notice the new use of the scope resolution operator as it occurs in the friend declaration
within the truck class declaration. In this case, it is used to tell the compiler that the
function sp greater() is a member of the car class.

One easy way to remember how to use the scope resolution operator is that the class name
followed by the scope resolution operator followed by the member name fully specifies a
class member.

In fact, when referring to a member of a class, it is never wrong to fully specify its name.
However, when an object is used to call a member function or access a member variable,
the full name is redundant, and seldom used. For example,

t = c1.sp_greater(t1);

can be written using the (redundant) scope resolution operator and the class name car
like this:

t = c1.car:: sp_greater(t1);

However, since c1 is an object of type car, the compiler already knows that sp greater()
is a member of the car class, making the full class specification unnecessary.

EXERCISE

1. Imagine a situation in which two classes, called pr1 and pr2, shown here, share one
printer. Further, imagine that other parts of your program need to know when the printer

83

TEACH YOURSELF
C++

is in use by an object of either of these two classes. Create a function called inuse() that
returns true when the printer is being used by either and false otherwise. Make this
function a friend of both pr1 and pr2.

class pr1

{

int printing;

// ...

public:

pr1() { printing = 0; }

void set_print(int status) { printing = status; }

// ...

};

class pr2

{

int printing;

// ...

public:

void set_print(int status) { printing = status; }

// ...

};

SKILLS CHECK

Mastery Skills Check

Before proceeding, you should be able to answer the following questions and perform the exer-
cises.

1. What single prerequisite must be met in order for one object to be assigned to another?

2. Given this class fragment,

class samp

{

double *p;

public:

samp(double d)

{

p = (double *) malloc(sizeof(double));

if(!p)

exit (1); // allocation error

*p = d;

}

~samp() { free(p); }

// ..

};

// ...

samp ob1 (123.09) , ob2 (0.0);

// ...

ob2 = ob1;

84

A CLOSER LOOK AT CLASSES
SKILLS CHECK

what problem is caused by the assignment of ob1 to ob2?

3. Given this class,

class planet

{

int moons;

double dist_from_sun; // in miles

double diameter;

double mass;

public:

//

double get_miles () { return dist_from_sun; }

};

create a function called light() that takes as an argument an object of type planet
and returns the number of seconds that it takes light from the sun to reach the planet.
(Assume that light travels at 186,000 miles per second and that dist from sun is specified
in miles.)

4. Can the address of an object be passed to a function as an argument?

5. Using the stack class, write a function called loadstack() that returns a stack that is
already loaded with the letters of the alphabet(a-z). Assign this stack to another object
in the calling routine and prove that it contains the alphabet. Be sure to change the stack
size so it is large enough to hold the alphabet.

6. Explain why you must be careful when passing objects to a function or returning objects
from a function.

7. What is a friend function?

Cumulative Skills Check

This section checks how well you have integrated material in this chapter with that from the
preceding chapters.

1. Functions can be overloaded as long as the number or type of their parameters differs.
Overload loadstack() from Exercise 5 of the Mastery Skills Check so that it takes an
integer, called upper, as a parameter. In the overloaded version, if upper is 1, load the
stack with the uppercase alphabet. Otherwise, load it with the lowercase alphabet.

2. Using the strtype class shown in Section 3.1, Example 3, add a friend function that
takes as an argument a pointer to an object of type strtype and returns a pointer to the
string pointed to by that object. (That is, have the function return p.) Call this function
get string().

3. Experiment: When an object of a derived class is assigned to another object of the same
derived class, is the data associated with the base class also copied? To find out, use the
following two classes and write a program that demonstrates what happens.

class base

{

int a;

public:

void load_a(int n) { a = n; }

85

TEACH YOURSELF
C++

int get_a() { return a; }

};

class derived : public base

{

int b;

public:

void load_b(int n) { b = n; }

int get_b() { return b; }

};

86

4
Arrays, Pointers, and References

Chapter Objectives

4.1 Arrays of objects

4.2 Using pointers to objects

4.3 The this pointer

4.4 Using new and delete

4.5 More about new and delete

4.6 References

4.7 Passing references to objects

4.8 Returning references

4.9 Independent references and restrictions

87

TEACH YOURSELF
C++

This chapter examines several important issues involving arrays of objects and pointers to
objects. It concludes with a discussion of one of C++’s most important innovations: the

reference. The reference is crucial to many C++ features, so a careful reading is advised.

Review Skills Check

Before proceeding, you should be able to correctly answer the following questions and do the
exercises.

1. When one object is assigned to another, what precisely takes place?

2. Can any troubles or side effects occur when one object is assigned to another? (Give an
example.)

3. When an object is passed as an argument to a function, a copy of that object is made. Is
the copy’s constructor function called? Is its destructor called?

4. By default, objects are passed to functions by value, which means that what occurs to
the copy inside the function is not supposed to affect the argument used in the call. Can
there be a violation of this principle? If so, give an example.

5. Given the following class, create a function called make sum() their returns an object of
type summation. Have this function prompt the user for a number and then construct
an object having this value and return it to the calling procedure. Demonstrate that the
function works.

class summation

{

int num;

long sum; // summation of num

public:

void set_sum(int n);

void show_sum ()

{

cout << num << " summed is " << sum << "\n";

}

};

void summation :: set_sum(int n)

{

int i;

num = n;

sum = 0;

for(i=1; i<=n; i++)

sum += i;

}

6. In the preceding question, the function set sum() was not defined in line within the sum-
mation class declaration. Give a reason why this might be necessary for some compilers.

7. Given the following class, show how to add a friend function called isneg() that takes one
parameter of type myclass and returns true if num is negative and false otherwise.

88

ARRAYS, POINTERS, AND REFERENCES

4.1. ARRAYS OF OBJECTS

class myclass

{

int num;

public:

myclass(int x) { num = x; }

};

8. Can a friend function be friends with more than one class?

4.1 ARRAYS OF OBJECTS

As has been stated several times, objects are variables and have the same capabilities and
attributes as any other type of variable. Therefore, it is perfectly acceptable for objects to be
arrayed. The syntax for declaring an array of objects is exactly like that used to declare an
array of any other type of variable. Further, arrays of objects are accessed just like arrays of
other types of variables.

EXAMPLES

1. Here is an example of an array of objects:

#include <iostream >

using namespace std;

class samp

{

int a;

public:

void set_a(int n) { a = n; }

int get_a() { return a; }

};

int main()

{

samp ob[4];

int i;

for(i=0; i<4; i++)

ob[i]. set_a(i);

for(i=0; i<4; i++)

cout << ob[i]. get_a();

cout << "\n";

return 0;

}

This program creates a four-element array of objects of type samp and then loads each
element’s a with a value between 0 and 3. Notice how member functions are called relative
to each array element. The array name, in this case ob, is indexed; then the member access
operator is applied, followed by the name of the member function to be called.

89

TEACH YOURSELF
C++

2. If a class type includes a constructor, an array of objects can be initialized. For example,
here ob is an initialized array:

// Initialize an array.

#include <iostream >

using namespace std;

class samp

{

int a;

public:

samp(int n) { a = n; }

int get_a() { return a; }

};

int main()

{

samp ob[4] = { -1, -2, -3, -4 };

int i;

for(i=0; i<4; i++)

cout << ob[i]. get_a() << ’ ’;

cout << "\n";

return 0;

}

This program displays -1 -2 -3 -4 on the screen. In this example, the values -1 through
-4 are passed to the ob constructor function.

Actually, the syntax shown in the initialization list is shorthand for this longer form (first
shown in Chapter 2):

samp ob[4] = { samp(-1), samp(-2),

samp(-3), samp(-4) };

However, the form used in the program is more common (although, as you will see, this
form will work only with arrays whose constructors take only one argument).

3. You can also have multidimensional arrays of objeects. For example, here is a program
that creates a two-dimensional array of objects and initializes them:

// Create a two -dimensional array of objects.

#include <iostream >

using namespace std;

class samp

{

int a;

public:

samp(int n) { a = n; }

int get_a() { return a; }

};

90

ARRAYS, POINTERS, AND REFERENCES

4.1. ARRAYS OF OBJECTS

int main()

{

samp ob [4][2] = { 1, 2,

3, 4,

5, 6,

7, 8,

};

int i;

for(i=0; i<4; i++)

{

cout << ob[i][0]. get_a() << ’ ’;

cout << ob[i][1]. get_a() << "\n";

}

cout << "\n";

return 0;

}

This program displays

1 2

3 4

5 6

7 8

4. As you know, a constructor can take more than one argument. When initializing an array
of objects whose constructor takes more than one argument, you must use the alternative
form of initialization mentioned earlier. Let’s begin with an example:

#include <iostream >

using namespace std;

class samp

{

int a, b;

public:

samp(int n, int m) { a = n; b = m; }

int get_a() { return a; }

int get_b() { return b; }

};

int main()

{

samp ob [4][2] = { samp(1, 2), samp(3, 4),

samp(5, 6), samp(7, 8),

samp(9, 10), samp(11, 12),

samp(13, 14), samp(15, 16)

};

int i;

91

TEACH YOURSELF
C++

for(i=0; i<4; i++)

{

cout << ob[i][0]. get_a() << ’ ’;

cout << ob[i][0]. get_b() << "\n";

cout << ob[i][1]. get_a() << ’ ’;

cout << ob[i][1]. get_b() << "\n";

}

cout << "\n";

return 0;

}

In this example, samp’s constructor takes two arguments. Here, they array ob is declared
and initialized in main() by using direct calls to samp’s constructor. This is necessary
because the formal C++ syntax allows only one argument at a time in a comma-separated
list. There is no way, for example, to specify two (o more) arguments per entry in the
list. Therefore, when you initialize arrays of objects that have constructors that take more
than one argument, you must use the ”long form” initialization syntax rather than the
”shorthand form.”

Note: You can always use the long form of initialization even if the object takes only one
argument. It’s just that the short form is more convenient in this case.

The preceding program displays

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

EXERCISES

1. Using the following class declaration, create a ten-element array and initialize the ch
element with the values A through J. Demonstrate that the array does, indeed, contain
these values.

#include <iostream >

using namespace std;

class letters

{

char ch;

public:

letters(char c) { ch = c; }

char get_ch () { return ch; }

};

92

ARRAYS, POINTERS, AND REFERENCES

4.2. USING POINTERS TO OBJECTS

2. Using the following class declaration, create a ten-element array, initialize num to the
values 1 through 10, and initialize sqr to num’s square.

#include <iostream >

using namespace std;

class squares

{

int num , sqr;

public:

squares(int a, int b) { num = a; sqr = b; }

void show() { cout << num << ’ ’ << sqr << "\n"; }

};

3. Change the initialization in Exercise 1 so it uses the long form. (That is, invoke letters’
constructor explicitly in the initialization list.)

4.2 USING POINTERS TO OBJECTS

As discussed in Chapter 2, objects can be accessed via pointers. As you know, when a pointer
to an object is used, the object’s members are referenced using the arrow (->) operator instead
of the dot (.) operator.

Pointer arithmetic using an object pointer is the same as it is for any other data type: it is
performed relative to the type of the object. For example, when an object pointer is incremented,
it points to the next object. When an object pointer is decremented, it points to the previous
object.

EXAMPLES

1. Here is an example of object pointer arithmetic:

// Pointers to objects.

#include <iostream >

using namespace std;

class samp

{

int a, b;

public:

samp(int n, int m) { a = n; b = m; }

int get_a() { return a; }

int get_b() { return b; }

};

int main()

{

samp ob[4] = { samp(1, 2),

samp(3, 4),

samp(5, 6),

samp(7, 8)

};

int i;

93

TEACH YOURSELF
C++

samp *p;

p = ob; // get starting address of array

for(i=0; i<4; i++)

{

cout << p->get_a() << ’ ’;

cout << p->get_b() << "\n";

p++; // advance to next object

}

cout << "\n";

return 0;

}

This program displays

1 2

3 4

5 6

7 8

As evidenced by the output, each time p is incremented, it points to the next object in
the array.

EXERCISES

1. Rewrite Example 1 so it displays the contents of the ob array in reverse order.

2. Change Section 4.1, Example 3 so the two-dimensional array is accessed via a pointer.
Hint: In C++, as in C, all arrays are stored contiguously, left to right, low to high.

4.3 THE this POINTER

C++ contains a special pointer that is called this. this is a pointer that is automatically passed
to any member function when it is called, and it is a pointer to the object that generates the
call. For example, given this statement,

ob ,f1(); // assume that ob is an object

the function f1() is automatically passed a pointer to ob-which is the object that invokes the
call. This pointer is referred to as this.

It is important to understand that on;y member functions are passed a this pointer. For
example, a friend does not have a this pointer.

EXAMPLE

1. As you have seen, when a member function refers to another member of a class, it does
so directly without qualifying the member with either a class or an object specification.
For example, examine this short program, which creates a simple inventory class:

94

ARRAYS, POINTERS, AND REFERENCES

4.3. THE this POINTER

// Demonstrate the this pointer.

#include <iostream >

#include <cstring >

using namespace std;

class inventory

{

char item [20];

double cost;

int on_hand;

public:

inventory(char *i, double c, int o)

{

strcpy(item , i);

cost = c;

on_hand = o;

}

void show();

};

void inventory ::show()

{

cout << item;

cout << ": $" << cost;

cout << " On hand: " << on_hand << "\n";

}

int main()

{

inventory ob("wrench", 4.95, 4);

ob.show();

return 0;

}

As you can see, within the constructor inventory() and the member function show(),
the member variables item, cost, and on hand are referred to directly. This is because a
member function can be called only in conjunction with an object. Therefore, the compiler
knows which object’s data is being referred to.

However, there is an even more subtle explanation. When a member function is called,
it is automatically passed a this pointer to the object that invoked the call. Thus, the
preceding program could be rewritten as shown here:

// Demonstrate the this pointer.

#include <iostream >

#include <cstring >

using namespace std;

class inventory

{

char item [20];

95

TEACH YOURSELF
C++

double cost;

int on_hand;

public:

inventory(char *i, double c, int o)

{

strcpy(this ->item , i); // access members

this ->cost = c; // through the this

this ->on_hand = o; // pointer

}

void show();

};

void inventory ::show()

{

cout << this ->item; // use this to access members

cout << ": $" << this ->cost;

cout << " On hand: " << this ->on_hand << "\n";

}

int main()

{

inventory ob("wrench", 4.95, 4);

ob.show();

return 0;

}

Here the member variables are accessed explicitly through the this pointer. Thus, within
show(), these two statements are equivalent:

cost = 123.23;

this ->cost = 123.23;

In fact, the first form is, loosely speaking, a shorthand for the second.

While no C++ programmer would use the this pointer to access a class member as just
shown, because the shorthand form is much easier, it is important to understand what
the shorthand implies.

The this pointer has several uses, including aiding in overloading operators. This use will
be detailed in Chapter 6. For now, the important thing to understand is that by default,
all member functions are automatically passed a pointer to the invoking object.

EXERCISE

1. Given the following program, convert all appropriate references to class members to ex-
plicit this pointer references.

#include <iostream >

using namespace std;

class myclass

{

int a, b;

96

ARRAYS, POINTERS, AND REFERENCES

4.4. USING new AND delete

public:

myclass(int n, int m) { a = n; b = m; }

int add() { return a+b; }

void show();

};

void myclass ::show()

{

int t;

t = add(); // call member function

cout << t << "\n";

}

int main()

{

myclass ob(10, 14);

ob.show();

return 0;

}

4.4 USING new AND delete

Up to now, when memory needed to be allocated, you have been using malloc(), and you have
been freeing allocated memory by using free(). These are, of course, the standard C dynamic
allocation functions. While these functions are available in C++, C++ provides a safer and
more convenient way to allocate and free memory. In C++, you can allocate memory using
new and release it using delete. These operators take these general forms:

p_var = new type;

delete p_var;

Here type is the type specifier of the object for which you want to allocate memory and p-var
is a pointer to that type. new is an operator that returns a pointer to dynamically allocated
memory that is large enough to hold an object of type type. delete releases that memory when
it is no longer needed. delete can be called only with an invalid pointer, the allocation system
will be destroyed, possibly crashing your program.
If there is insufficient available memory to fill an allocation request, one of two actions will
occur. Either new will return a null pointer or it will generate an exception. (Exceptions and
exception handling are described later in this book; loosely, an exception is a run-time error
that can be managed in a structured fashion.) In Standard C++, the default behavior of new
is to generate an exception when it cannot satisfy an allocation request. If this exception is not
handled by your program, your program will be terminated. The trouble is that the precise
action that new takes on failure has been changed several times over the past few years. Thus,
it is possible that your compiler will not implement new as defined by Standard C++.
When C++ was first invented, new returned null on failure. Later this was changed such that
new caused an exception on failure. Finally, it was decided that a new failure will generate an
exception by default, but that a null pointer could be returned instead, as an option. Thus, new
has been implemented differently at different times by compiler manufacturers. For example,
at the time of this writing, Microsoft’s Visual C++ returns a null pointer when new fails.

97

TEACH YOURSELF
C++

Borland C++ generates an exception. Although all compilers will eventually implement new
in compliance with Standard C++, currently the only way to know the precise action of new
on failure is to check your compiler’s documentation.

Since there are two possible ways that new can indicate allocation failure, and since different
compilers might do so differently, the code in this book will be written in such a way that both
contingencies are accommodated. All code in this book will test the pointer returned by new
for null. This handles compilers that implement new by returning null on failure, while causing
no harm for those compilers for which new throws an exception. If your compiler generates
an exception when new fails, the program will simply be terminated. Later, when exception
handling is described, new will be re-examined and you will learn how to better handle an
allocation failure. You will also learn about an alternative form of new that always returns a
null pointer when an error occurs.

One last point: none of the examples in this book should cause new to fail, since only a handful
of bytes are being allocated by any single program.

Although new and delete perform functions similar to malloc() and free(), they have several
advantages. First, new automatically allocates enough memory to hold an object of the specified
type. You do not need to use sizeof, for example, to compute the number of bytes required. This
reduces the possibility for error. Second, new automatically returns a pointer of the specified
type. You do not need to use an explicit type cast the way you did when you allocated memory
by using malloc() (see the following note). Third, both new and delete can be overloaded,
enabling you to easily implement your own custom allocation system. Fourth, it is possible to
initialize a dynamically allocated object. Finally, you no longer need to include <cstdlib>
with your programs.

Note: In C, no type cast is required when you are assigning the return value of malloc() to
a pointer because the void * returned by malloc() is automatically converted into a pointer
compatible with the type of pointer on the left side of the assignment. However, this is not the
case in C++, which requires an explicit type cast when you use malloc(). The reason for this
difference is that it allows C++ to enforce more rigorous type checking.

Now that new and delete have been introduced, they will be used instead of malloc() and
free().

EXAMPLES

1. As a short first example, this program allocates memory to hold an integer:

// A simple example of new and delete.

#include <iostream >

using namespace std;

int main()

{

int *p;

p = new int; // allocate room for an integer

if(!p)

{

cout << "Allocation error\n";

return 1;

}

*p = 100;

98

ARRAYS, POINTERS, AND REFERENCES

4.4. USING new AND delete

cout << "Here is integer at p: " << *p << "\n";

delete p; // release memory

return 0;

}

Notice that the value returned by new is checked before it is used. As explained earlier,
this check is meaningful only if your compiler implements new is such a way that it
returns null on failure.

2. Here is an example that allocates an object dynamically.

// Allocating dynamic objects.

#include <iostream >

using namespace std;

class samp

{

int i, j;

public:

void set_i(int a, int b) { i=a; j=b; }

int get_product () { return i*j; }

};

int main()

{

samp *p;

p = new samp; // allocate object

if(!p)

{

cout << "Allocation error\n";

return 1;

}

p->set_i(4, 5);

cout << "Product is: " << p->get_product () << "\n";

return 0;

}

EXERCISES

1. Write a program that uses new to dynamically allocate a float, a long, and a char. Give
these dynamic variables values and display their values. Finally, release all dynamically
allocated memory by using delete.

2. Create a class that contains a person’s name and telephone number. Using new, dynam-
ically allocate an object of this class and put your name and phone number into these
fields within this object.

3. What are the two ways that new might indicate an allocation failure?

99

TEACH YOURSELF
C++

4.5 MORE ABOUT new AND delete

This section discusses two additional features of new and delete. First, dynamically allocated
objects can be given initial values. Second, dynamically allocated arrays can be created.
You can give a dynamically allocated object an initial value by using this form of the new
statement:

p_var = new type (initial_value);

To dynamically allocate a one-dimensional array, use this form of new:

p_var = new type [size];

After this statement has executed, p-var will point to the start of an array of size elements of
the type specified. For various technical reasons, it is not possible to initialize an array that is
dynamically allocated.
To delete a dynamically allocated array, use this form of delete:

delete [] p_var;

This syntax causes the compiler to call the destructor function for each element in the array. It
does not cause p-var to be freed multiple times. p-var is still freed only once.
Note: For older compilers, you might need to specify the size of the array that you are deleting
between the square brackets of the delete statement. This was required by the original definition
of C++. However, the size specification is not needed by modern compilers.

EXAMPLES

1. This program allocates memory for an integer and initializes that memory:

// An example of initializing a dynamic variable.

#include <iostream >

using namespace std;

int main()

{

int *p;

p = new int(9); // give initial value of 9

if(!p)

{

cout << "Allocation error\n";

return 1;

}

cout << "Here is integer at p: " << *p << "\n";

delete p; // release memory

return 0;

}

As you should expect, this program displays the value 9, which is the initial value given
to the memory pointed to by p.

2. The following program passes initial values to a dynamically allocated object:

100

ARRAYS, POINTERS, AND REFERENCES

4.5. MORE ABOUT new AND delete

// Allocating dynamic objects

#include <iostream >

using namespace std;

class samp

{

int i, j;

public:

samp(int a, int b) { i=a; j=b; }

int get_product () { return i*j; }

};

int main()

{

samp *p;

p = new samp(6, 5); // allocate object with

initialization

if(!p)

{

cout << "Allocation error\n";

return 1;

}

cout << "Product is: " << p->get_product () << "\n";

delete p;

return 0;

}

When the samp object is allocated, its constructor is automatically called and is passed
the values 6 and 5.

3. The following program allocates an array of integers:

// A simple example of new and delete

#include <iostream >

using namespace std;

int main()

{

int *p;

p = new int [5]; // allocate room for 5 integers

// always make sure that allocation succeeded

if(!p)

{

cout << "Allocation error\n";

return 1;

}

101

TEACH YOURSELF
C++

int i;

for(i=0; i<5; i++)

p[i] = i;

for(i=0; i<5; i++)

{

cout << "Here is integer at p[" << i << "]: ";

cout << p[i] << "\n";

}

delete [] p;

return 0;

}

This program displays the following:

Here is integer at p[0]: 0

Here is integer at p[1]: 1

Here is integer at p[2]: 2

Here is integer at p[3]: 3

Here is integer at p[4]: 4

4. The following program creates a dynamic array of objects:

// Allocating dynamic objects.

#include <iostream >

using namespace std;

class samp

{

int i, j;

public:

void set_ij(int a, int b) { i=a; j=b; }

int get_product () { return i*j; }

};

int main()

{

samp *p;

int i;

p = new samp [10]; // allocate object array

if(!p)

{

cout << "Allocation error\n";

return 1;

}

for(i=0; i<10; i++)

102

ARRAYS, POINTERS, AND REFERENCES

4.5. MORE ABOUT new AND delete

p[i]. set_ij(i, i);

for(i=0; i<10; i++)

{

cout << "Product [" << i << "] is: ";

cout << p[i]. get_product () << "\n";

}

delete [] p;

return 0;

}

This program displays the following:

Here is integer at p[0]: 0

Product [0] is: 0

Product [1] is: 1

Product [2] is: 4

Product [3] is: 9

Product [4] is: 16

Product [5] is: 25

Product [6] is: 36

Product [7] is: 49

Product [8] is: 64

Product [9] is: 81

5. The following version of the preceding program gives samp a destructor, and now when
p is freed, each element’s destructor is called:

// Allocating dynamic objects

#include <iostream >

using namespace std;

class samp

{

int i, j;

public:

void set_ij(int a, int b) { i=a; j=b; }

~samp() { cout << "Destroying ...\n"; }

int get_product () { return i*j; }

};

int main()

{

samp *p;

int i;

p = new samp [10]; // allocate object array

103

TEACH YOURSELF
C++

if(!p)

{

cout << "Allocation error\n";

return 1;

}

for(i=0; i<10; i++)

p[i]. set_ij(i, i);

for(i=0; i<10; i++)

{

cout << "Product [" << i << "] is: ";

cout << p[i]. get_product () << "\n";

}

delete [] p;

return 0;

}

This program displays the following:

Here is integer at p[0]: 0

Product [0] is: 0

Product [1] is: 1

Product [2] is: 4

Product [3] is: 9

Product [4] is: 16

Product [5] is: 25

Product [6] is: 36

Product [7] is: 49

Product [8] is: 64

Product [9] is: 81

Destroying...

Destroying...

Destroying...

Destroying...

Destroying...

Destroying...

Destroying...

Destroying...

Destroying...

Destroying...

104

ARRAYS, POINTERS, AND REFERENCES

4.6. REFERENCES

As you can see, samp’s destructor is called ten times-once for each element in the array.

EXERCISES

1. Show how to convert the following code into its equivalent that uses new.

char *p;

p = (char *) malloc (100);

// ...

strcpy(p, "This is a test");

Hint: A string is simply an array of characters.

2. Using new, show how to allocate a double and give it an initial value of -123.0987.

4.6 REFERENCES

C++ contains a feature that is related to the pointer: the reference. A reference is an implicit
pointer that for all intents and purposes acts like another name for a variable. There are three
ways that a reference can be used. First, a reference can be passed to a function. Second, a
reference can be returned by a function. Finally, an independent reference can be created. Each
of these applications of the reference is examined, beginning with reference parameters.
Without a doubt, the most important use of a reference is as a parameter to a function. To
help you understand what a reference parameter is and how it works, let’s first start with a
program that uses a pointer (not a reference) as a parameter:

#include <iostream >

using namespace std;

void f(int *n); // use a pointer parameter

int main()

{

int i = 0;

f(&i);

cout << "Here is i’s new value: " << i << "\n";

return 0;

}

void f(int *n)

{

*n = 100; // put 100 into the argument pointed to by n

}

Here f() loads the value 100 into the integer pointed to by n. In this program, f() is called with
the address of i in main(). Thus, after f() returns, i contains the value 100.
This program demonstrates how a pointer is used as a parameter to manually create a call-
by-reference parameter-passing mechanism. In a C program, this is the only way to achieve a
call-by-reference.

105

TEACH YOURSELF
C++

However, in C++, you can completely automate this process by using a reference parameter. To
see how, let’s rework the previous program. Here is a version that uses a reference parameter:

#include <iostream >

using namespace std;

void f(int &n); // declare a reference parameter

int main()

{

int i = 0;

f(i);

cout << "Here is i’s new value: " << i << "\n";

return 0;

}

void f(int &n)

{

// notice that no * is needed in the following statement

n = 100; // put 100 into the argument used to call f()

}

Examine this program carefully. First, to declare a reference variable or parameter, you precede
the variable’s name with the &. This is how n is declared as a parameter to f(). Now that n is
a reference, it is no longer necessary-or even legal-to apply the * operator. Instead, each time
n is used within f(), it is automatically treated as a pointer to the argument used to call f().
This means that the statement

n = 100;

actually puts the value 100 into the variable used to call f(), which in this case, is i. Further,
when f() is called, there is no need to precede the argument with the &. Instead, because f() is
declared as taking a reference parameter, the address to the argument is automatically passed
to f().
To review, when you use a reference parameter, the compiler automatically passes the address
of the variable used as the argument. There is no need to manually generate the address of the
argument by preceding it with an & (in fact, it is not allowed). Further, within the function,
the compiler automatically uses the variable pointed to by the reference parameter. There is no
need to employ the * (and again, it is not allowed). Thus, a reference parameter fully automates
the call-by-reference parameter-passing mechanism.
It is important to understand that you cannot change what a reference is pointing to. For
example, if the statement

n++;

were put inside f() in the preceding program, n would still be pointing to i in main(). Instead
of incrementing n, this statement increments the value of the variable being referenced (in this
case, i).
Reference parameters offer several advantages over their (more or less) equivalent pointer al-
ternatives. First, from a practical point of view, you no longer need to remember to pass the
address of an argument. When a reference parameter is used, the address is automatically
passed. Second, in the opinion of many programmers, reference parameters offer a cleaner,

106

ARRAYS, POINTERS, AND REFERENCES

4.6. REFERENCES

more elegant interface than the rather clumsy explicit pointer mechanism. Third, as you will
see in the next section, when an object is passed to a function as a reference, no copy is made.
This is one way to eliminate the troubles associated with the copy of an argument damaging
something needed elsewhere in the program when its destructor function is called.

EXAMPLES

1. The classic example of passing arguments by reference is a function that exchanges the
values of the two arguments with which it is called. Here is an example called swapargs()
that uses references to swap its two integer arguments:

#include <iostream >

using namespace std;

void swapargs(int &x, int &y);

int main()

{

int i, j;

i = 10;

j = 19;

cout << "i: " << i << ", ";

cout << "j: " << j << "\n";

swapargs(i, j);

cout << "After swapping: ";

cout << "i: " << i << ", ";

cout << "j: " << j << "\n";

return 0;

}

void swapargs(int &x, int &y)

{

int t;

t = x;

x = y;

y = t;

}

If swapargs() had been written using pointers instead of references, it would have looked
like this:

void swapargs(int *x, int *y)

{

int t;

t = *x;

107

TEACH YOURSELF
C++

*x = *y;

*y = t;

}

As you can see, by using the reference version of swapargs(), the need for the * operator
is eliminated.

2. Here is a program that uses the round() function to round a double value. The value
to be rounded is passed by reference.

#include <iostream >

#include <cmath >

using namespace std;

void round(double &num);

int main()

{

double i = 100.4;

cout << i << " rounded is ";

round(i);

cout << i << "\n";

i = 10.9;

cout << i << " rounded is ";

round(i);

cout << i << "\n";

return 0;

}

void round(double &num)

{

double frac;

double val;

// decompose num into whole and fractional parts

frac = modf(num , &val);

if(frac < 0.5)

num =val;

else

num = val +1.0;

}

round() uses a relatively obscure standard library function called modf() to decompose
a number into its whole number and fractional parts. The fractional part is returned; the
whole number is put into the variable pointed to by modf()’s second parameter.

EXERCISES

108

ARRAYS, POINTERS, AND REFERENCES

4.7. PASSING REFERENCES TO OBJECTS

1. Write a function called neg() that reverses the sign of its integer parameter. Write
the function two ways-first by using a pointer parameter and then by using a reference
parameter. Include a short program to demonstrate their operation.

2. What is wrong with the following program?

// This program has an error.

#include <iostream >

using namespace std;

void triple(double &num);

int main()

{

double d = 7.0;

triple (&d);

cout << d;

return 0;

}

// Triple num’s value.

void triple(double &num)

{

num = 3 * num;

}

3. Give some advantages of reference parameters.

4.7 PASSING REFERENCES TO OBJECTS

As you learned in Chapter 3, when an object is passed to a function by use of the default call-by-
value parameter-passing mechanism, a copy of that object is made. Although the parameter’s
constructor function is not called, its destructor function is called when the function returns.
As you should recall, this can cause serious problems in some instances-when the destructor
frees dynamic memory, for example.
One solution to this problem is to pass an object by reference. (The other solution involves
the use of copy constructors, which are discussed in Chapter 5.) When you pass the object by
reference, no copy is made, and therefore its destructor function is not called when the function
returns. Remember, however, that changes made to the object inside the function affect the
object used as the argument.
Note: It is critical to understand that a reference is not a pointer. Therefore, when an object
is passed by reference, the member access operator remains the dot (.), not the arrow (->)

EXAMPLES

1. The following is an example that demonstrates the usefulness of passing an object by
reference. First, here is a version of a program that passes an object of myclass by value
to a function called f():

#include <iostream >

using namespace std;

109

TEACH YOURSELF
C++

class myclass

{

int who;

public:

myclass(int n)

{

who = n;

cout << "Constructing " << who << "\n";

}

~myclass () { cout << "Destructing " << who << "\n"; }

int id() { return who; }

};

// o is passed by value.

void f(myclass o)

{

cout << "Received " << o.id() << "\n";

}

int main()

{

myclass x(1);

f(x);

return 0;

}

This function displays the following:

Constructing 1

Received 1

Destructing 1

Destructing 1

As you can see, the destructor function is called twice-first when the copy of object 1 is
destroyed when f() terminates and again when the program finishes.

However, if the program is changed so that f() uses a reference parameter, no copy is
made and, therefore, no destructor is called when f() returns:

#include <iostream >

using namespace std;

class myclass

{

int who;

public:

myclass(int n)

{

who = n;

cout << "Constructing " << who << "\n";

110

ARRAYS, POINTERS, AND REFERENCES

4.7. PASSING REFERENCES TO OBJECTS

}

~myclass () { cout << "Destructing " << who << "\n"; }

int id() { return who; }

};

// Now o is passed by reference.

void f(myclass &o)

{

// note that . operator is still used!!

cout << "Received " << o.id() << "\n";

}

int main()

{

myclass x(1);

f(x);

return 0;

}

This version displays the following output:

Constructing 1

Received 1

Destructing 1

Remember: When accessing members of an object by using a reference, use the dot
operator, not the arrow.

EXERCISE

1. What is wrong with the following program? Show how it can be fixed by using a reference
parameter.

// This program has an error.

#include <iostream >

#include <cstring >

#include <cstdlib >

using namespace std;

class strtype

{

char *p;

public:

strtype(char *s);

~strtype () { delete [] p; }

char *get() { return p; }

};

strtype :: strtype(char *s)

{

111

TEACH YOURSELF
C++

int l;

l = strlen(s)+1;

p = new char [l];

if(!p)

{

cout << "Allocation error\n";

exit (1);

}

strcpy(p, s);

}

void show(strtype x)

{

char *s;

s = x.get();

cout << s << "\n";

}

int main()

{

strtype a("Hello"), b("There");

show(a);

show(b);

return 0;

}

4.8 RETURNING REFERENCES

A function can return a reference. As you will see in Chapter 6, returning a reference can
be very useful when you are overloading certain types of operators. However, it also can be
employed to allow a function to be used on the left side of an assignment statement. The effect
of this is both powerful and startling.

EXAMPLES

1. To begin, here is a very simple program that contains a function that returns a reference:

// A simple example of a function returning a reference.

#include <iostream >

using namespace std;

int &f(); // return a reference

int x;

int main()

112

ARRAYS, POINTERS, AND REFERENCES

4.8. RETURNING REFERENCES

{

f() = 100; // assign 100 to reference returned by f()

cout << x << "\n";

return 0;

}

// Return an int reference

int &f()

{

return x; // returns a reference to x

}

Here function f() is declared as returning a reference to an integer. Inside the body of the
function, the statement

return x;

does not return the value of the global variable x, but rather, it automatically returns x’s
address (int the form of a reference). Thus, inside main(), the statement

f() = 100;

puts the value 100 into x because f() has returned a reference to it.

To review, function f() returns a reference. Thus when f() is used on the left side of the
assignment statement, it is this reference, returned by f(), that is being assigned to. Since
f() returns a reference to x (in this example), it is x that receives the value 100.

2. You must be careful when returning a reference that the object you refer to does not go
out of scope. For example, consider this slight reworking of function f():

// Return an int reference.

int &f()

{

int x; // x is now a local variable

return x; // returns a reference to x

}

In this case, x is now local to f() and will go out of scope when f() returns. This effectively
means that the reference returned by f() is useless.

Note: Some C++ compilers will not allow you to return a reference to a local variable.
However, this type of problem can manifest itself in other ways, such as when objects are
allocated dynamically.

3. One very good use of returning a reference is found when a bounded array type is created.
As you know, in C and C++, no array boundary checking occurs. It is therefore possible
to overflow or underflow an array. However, in C++, you can create an array class that
performs automatic bounds checking. An array class contains two core functions-one that
stores information into the array and one that retrieves information. These functions can
check, at run time, that the array boundaries are not overrun.

The following program implements a bounds-checking array for characters:

113

TEACH YOURSELF
C++

// A simple bounded array example.

#include <iostream >

#include <cstdlib >

using namespace std;

class array

{

int size;

char *p;

public:

array(int num);

~array () { delete [] p; }

char &put(int i);

char get(int i);

};

array ::array(int num)

{

p = new char [num];

if(!p)

{

cout << "Allocation error\n";

exit (1);

}

size = num;

}

// Put something into the array.

char &array::put(int i)

{

if(i<0 || i>=size)

{

cout << "Bounds error !!!\n";

exit (1);

}

return p[i]; // return reference to p[i]

}

// Get something from the array.

char array::get(int i)

{

if(i<0 || i>=size)

{

cout << "Bounds error !!!\n";

exit (1);

}

return p[i];

}

int main()

{

114

ARRAYS, POINTERS, AND REFERENCES

4.9. INDEPENDENT REFERENCES AND RESTRICTIONS

array a(10);

a.put(3) = ’X’;

a.put(2) = ’R’;

cout << a.get (3) << a.get (2);

cout << "\n";

// now generate run -time boundary error

a.put (11) = ’!’;

return 0;

}

This example is a practical use of functions returning references, and you should examine it
closely. Notice that the put() function returns a reference to the array element specified by
parameter i. This reference can them be used on the left side of an assignment statement
to store something in the array-if the index specified by i is not out of bounds. The reverse
is get(), which returns the value stored at the specified index if that index is within range.
This approach to maintaining an array is sometimes referred to as a safe array. (You will
see a better way to create a safe array later on, in Chapter 6.)

One other thing to notice about the preceding program is that the array is allocated
dynamically by the use of new. This allows arrays of differing length to be declared.

As mentioned, the way that bounds checking is performed in this program is a practical
application of C++. If you need to have array boundaries verified at run time, this is
one way to do it. However, remember that bounds checking slows access to the array.
Therefore, it is best to include bounds checking only when there is a real likelihood that
an array boundary will be violated.

EXERCISES

1. Write a program that creates a two-by-three two-dimensional safe array of integers.
Demonstrate that it works.

2. Is the following fragment valid? If not, why not?

int &f();

.

.

.

int *x;

x = f();

4.9 INDEPENDENT REFERENCES AND RESTRICTIONS

Although not commonly used, the independent reference is another type of reference that is
available in C++. An independent reference is a reference variable that in all effects is simply
another name for another variable. Because references cannot be assigned new values, an
independent reference must be initialized when it is declared.

Note: Because independent references are sometimes used, it is important that you know about
them. However, most programmers feel that there is no need for them and that they can add

115

TEACH YOURSELF
C++

confusion to a program. Further, independent references exist in C++ largely because there was
no compelling reason to disallow them. But for the most part, their use should be avoided.

There are a number of restrictions that apply to all types of references. You cannot reference
another reference. You cannot obtain the address of a reference. You cannot create arrays of
references, and you cannot reference a bit-field. References must be initialized unless they are
members of a class, are return values, or are function parameters.

Remember: References are similar to pointers, but they are not pointers.

EXAMPLES

1. Here is a program that contains an independent reference:

#include <iostream >

using namespace std;

int main()

{

int x;

int &ref = x; // create an independent reference

x = 10; // these two statements

ref = 10; // are functionally equivalent

ref = 100;

// this prints the number 100 twice

cout << x << ’ ’ << ref << "\n";

return 0;

}

In this program, the independent reference ref serves as a different name for x. From a
practical point of view, x and ref are equivalent.

2. An independent reference can refer to a constant. For example, this is valid:

const int &ref = 10;

Again, there is little benefit in this type of reference, but you may see it from time too
time in other programs.

EXERCISE

1. On your own, try to think of a good use for an independent reference.

SKILLS CHECK

Mastery Skills Check

At this point you should be able to perform the following exercises and answer the questions.

1. Given the following class, create a two-by-five two-dimensional array and give each object
in the array an initial value of your own choosing. Then display the contents of the array.

116

ARRAYS, POINTERS, AND REFERENCES

SKILLS CHECK

class a_type

{

double a, b;

public:

a_type(double x, double y)

{

a = x;

b = y;

}

void show() { cout << a << ’ ’ << b << "\n"; }

};

2. Modify your solution to the preceding problem so it accesses the array by using a pointer.

3. What is the this pointer?

4. Show the general forms for new and delete. What are some advantages of using them
instead of malloc() and free()?

5. What is a reference? What is one advantage of using a reference parameter?

6. Create a function called recip() that takes one double reference parameter. Have the
function change the value of that parameter into its reciprocal. Write a program to
demonstrate that it works.

Cumulative Skills Check

This section checks how well you have integrated material in this chapter with that from the
preceding chapters.

1. Given a pointer to an object, what operator is used to access a member of that object?

2. In Chapter 2, a strtype class was created that dynamically allocated space for a string.
Rework the strtype class (shown here for your convenience) so it uses new and delete.

#include <iostream >

#include <cstring >

#include <cstdlib >

using namespace std;

class strtype

{

char *p;

int len;

public:

strtype(char *ptr);

~strtype ();

void show();

};

strtype :: strtype(char *ptr)

{

len = strlen(ptr);

p = (char *) malloc(len+1);

117

TEACH YOURSELF
C++

if(!p)

{

cout << "Allocation error\n";

exit (1);

}

strcpy(p, ptr);

}

strtype ::~ strtype ()

{

cout << "Freeing p\n";

free(p);

}

void strtype ::show()

{

cout << p << " - length: " << len;

cout << "\n";

}

int main()

{

strtype s1("This is a test."), s2("I like C++.");

s1.show();

s2.show();

return 0;

}

3. On your own, rework any program from the preceding chapter so that it uses a reference.

118

5
Function Overloading

Chapter Objectives

5.1 Overloading constructor functions

5.2 Creating and using a copy constructor

5.3 The overload anachronism

5.4 Using default arguments

5.5 Overloading and ambiguity

5.6 Finding the address of an overloaded function

119

TEACH YOURSELF
C++

In this chapter you will learn more about overloading functions. Although this topic was
introduced early in this book, there are several further aspects of it that need to be cov-

ered. Among the topics included are how to overload constructor functions, how to create a
copy constructor, how to give functions default arguments, and how to avoid ambiguity when
overloading.

Review Skills Check

Before proceeding, you should be able to correctly answer the following questions and do the
exercises.

1. What is a reference? Give two important uses.

2. Show how to allocate a float and an int by using new. Also, show how to free them by
using delete.

3. What is the general form of new that is used to initialize a dynamic variable? Give a
concrete example.

4. Given the following class, show how to initialize a ten-element array so that x has the
value 1 through 10.

class samp

{

int x;

public:

samp(int n) { x = n; }

int getx() { return x; }

};

5. Give one advantage of reference parameters. Give one disadvantage.

6. Can dynamically allocated arrays be initialized?

7. Create a function called mag() using the following prototype that raises num to the order
of magnitude specified by order:

void mag(long &num , long order);

For example, if num is 4 and order is 2, when mag() returns, num will be 400. Demon-
strate in a program that the function works.

5.1 OVERLOADING CONSTRUCTOR FUNCTIONS

It is possible-indeed, common-to overload a class’s constructor function. (It is not possible to
overload a destructor, however.) There are three main reasons why you will want to overload
a constructor function: to gain flexibility, to support arrays, and to create copy constructors.
The first two of these are discussed in this section. Copy constructors are discussed in the next
section.

One thing to keep in mind as you study the examples is that there must be a constructor
function for each way that an object of a class will be created. If a program attempts to create
an object for which no matching constructor is found, a compile-time error occurs. This is why
overloaded constructor functions are so common to C++ programs.

120

FUNCTION OVERLOADING
5.1. OVERLOADING CONSTRUCTOR FUNCTIONS

EXAMPLES

1. Perhaps the most frequent use of overloaded constructor functions is to provide the op-
tion of either giving an object an initialization or not giving it one. For example, int the
following program, o1 is given an initial value, but o2 is not. If you remove thee con-
structor that has the empty argument list, the program will not compile because there is
no constructor that matches a non-initialized object of type myclass. The reverse is also
true. If you remove the parameterized constructor, the program will not compile because
there is no match for an initialized object. Both are needed for this program to compile
correctly.

#include <iostream >

using namespace std;

class myclass

{

int x;

public:

// overload constructor two ways

myclass () { x = 0; } // no initializer

myclass(int n) { x = n; } // initializer

int getx() { return x; }

};

int main()

{

myclass o1(10); // declare with initial value

myclass o2; // declare without initializer

cout << "o1: " << o1.getx() << ’\n’;

cout << "o2: " << o2.getx() << ’\n’;

return 0;

}

2. Another common reason constructor functions are overloaded is to allow both individual
objects and arrays of objects to occur within a program. As you probably know from
your own programming experience, it is fairly common to initialize a single variable,
but it is not as common to initialize an array. (Quite often array values are assigned
using information known only when the program is executing.) Thus, to allow non-
initialized arrays of objects along with initialized objects, you must include a constructor
that supports initialization and one that does not.

For instance, assuming the class myclass from Example 1, both of these declarations are
valid:

myclass ob(10);

myclass ob[5];

By providing both a parameterized and a parameterless constructor, your program allows
the creation of objects that are either initialized or not as needed.

Of course, once you have defined both parameterized and parameterless constructors you
can use them to create initialized and non-initialized arrays. For example, the following
program declares two arrays of type myclass; one is initialized and the other is not:

121

TEACH YOURSELF
C++

#include <iostream >

using namespace std;

class myclass

{

int x;

public:

// overload constructor two ways

myclass () { x = 0; } // no initializer

myclass(int n) { x = n; } // initializer

int getx() { return x; }

};

int main()

{

myclass o1 [10]; // declare array without initializers

// declare without initializer

myclass o2[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

int i;

for(i=0; i<10; i++)

{

cout << "o1[" << i << "]: " << o1[i].getx();

cout << ’\n’;

cout << "o2[" << i << "]: " << o2[i].getx();

cout << ’\n’;

}

return 0;

}

In this example, all elements of o1 are set to 0 by the constructor function. The elements
of o2 are initialized as shown in the program.

3. Another reason for overloading constructor functions is to allow the programmer to select
the most convenient method of initializing an object. To see how, first examine the
next example, which creates a class that holds a calender date. It overloads the date()
constructor two ways. One form accepts the date as a character string. In the other form,
the date is passed as three integers.

#include <iostream >

#include <cstdio > // included for sscanf ()

using namespace std;

class date

{

int day , month , year;

public:

date(char *str);

date(int m, int d, int y)

{

122

FUNCTION OVERLOADING
5.1. OVERLOADING CONSTRUCTOR FUNCTIONS

day = d;

month = m;

year = y;

}

void show()

{

cout << month << ’/’ << day << ’/’;

cout << year << ’\n’;

}

};

date::date(char *str)

{

sscanf(str , "%d%*c%d%*c%d", &month , &day , &year);

}

int main()

{

// construct date object using string

date sdate("12/31/99");

// construct date object using integers

date idate(12, 31, 99);

sdate.show();

idate.show();

return 0;

}

The advantage of overloading the date() constructor, as shown in this program, is that
you are free to use whichever version most conveniently fits the situation in which it is
being used. For example, if a date object is being created from user input, the string
version is the easiest to use. However, if the date object is being constructed through
some sort of internal computation, the three-integer parameter version probably makes
more sense.

Although it is possible to overload a constructor as many times as you want, doing so
excessively has a destructuring effect on the class. From a stylistic point of view, it is best
to overload a constructor to accommodate only those situations that are likely to occur
frequently. For example, overloading date() a third time so the date can be entered in
terms of milliseconds makes little sense. However, overloading it to accept an object of
type time t (a type that stores the system date and time) could be very valuable. (See
the Mastery Skills Check exercises at the end of this chapter for an example that does
just this.)

4. There is one other situation in which you will need to overload a class’s constructor
function: when a dynamic array of that class will be allocated. As you should recall from
the preceding chapter, a dynamic array cannot be initialized. Thus, if the class contains
a constructor that takes an initializer, you must include an overloaded version that takes
no initializer. For example, here is a program that allocates an object array dynamically:

#include <iostream >

123

TEACH YOURSELF
C++

using namespace std;

class myclass

{

int x;

public:

// overload constructor two ways

myclass () { x = 0; } // no initializer

myclass(int n) { x = n; } // initializer

int getx() { return x; }

};

int main()

{

myclass *p;

myclass ob(10); // initialize single variable

p = new myclass [10]; // can’t use initializers here

if(!p)

{

cout << "Allocation error\n";

return 1;

}

int i;

// initialize all elements to ob

for(i=0; i<10; i++)

p[i] = ob;

for(i=0; i<10; i++)

{

cout << "p[" << i << "]: " << p[i].getx();

cout << ’\n’;

}

return 0;

}

Without the overloaded version of myclass() that has no initializer, the new statement
would have generated a compile-time error and the program would not have been compiled.

EXERCISES

1. Given this partially defined class

class strtype

{

char *p;

int len;

public:

char *getstring { return p; }

124

FUNCTION OVERLOADING
5.2. CREATING AND USING A COPY CONSTRUCTOR

int getlength () { return len; }

};

add two constructor functions. Have the first one take no parameters. Have this one
allocate 255 bytes of memory (using new), initialize that memory as a null string, and
give len a value of 255. Have the other constructor take two parameters. The first is
the string to use for initialization and the other is the number of bytes to allocate. Have
this version allocate the specified amount of memory and copy the string ti that memory.
Perform all necessary boundary checks and demonstrate that your constructors work by
including a short program.

2. In Exercise 2 of Chapter 2, Section 2.1, you created a stopwatch emulation. Expand your
solution so that the stopwatch class provides both a parameterless constructor (as it does
already) and an overloaded version that accepts the system time in the form returned by
the standard function clock(). Demonstrate that your improvement works.

3. On your own, think about ways in which an overloaded constructor function can be
beneficial to your own programming tasks.

5.2 CREATING AND USING A COPY CONSTRUCTOR

One of the more important forms of an overloaded constructor is the copy constructor. As
numerous examples from the preceding chapters have shown, problems can occur when an
object is passed to or returned from a function. As you will learn in this section, one way to
avoid these problems is to define a copy constructor.

To begin, let’s restate the problem that a copy constructor is designed to solve. When an
object is passed to a function, a bitwise (i.e., exact) copy of that object is made and given to
the function parameter that receives the object. However, there are cases in which this identical
copy is not desirable. For example, if the object contains a pointer to allocated memory, the
copy will point to the same memory as does the original object. Therefore, if the copy makes
a change to the contents of this memory, it will be changed for the original object too! Also,
when the function terminates, the copy will be destroyed, causing its destructor to be called.
This might lead to undesired side effects that further affect the original object.

A similar situation occurs when an object is returned by a function. The compiler will commonly
generate a temporary object that holds copy of the value returned by the function. (This is done
automatically and is beyond your control.) This temporary object goes out of scope once the
value is returned to the calling routine, causing the temporary object’s destructor to be called.
However, if the destructor destroys something needed by the calling routine (for example, if it
frees dynamically allocated memory), trouble will follow.

At the core of these problems is the fact that a bitwise copy of the object is being made. To
prevent these problems, you, the programmer, need to define precisely what occurs when a copy
of an object is made so that you can avoid undesired side effects. The way you accomplish this
is by creating a copy constructor. By defining a copy constructor, you can fully specify exactly
what occurs when a copy of an object is made.

It is important for you to understand that C++ defines two distinct types of situations in
which the value of one object is given to another. The first situation is assignment. The second
situation is initialization which can occur three ways:

ä when an object is used to initialize another in a declaration statement.

ä when an object is passed as a parameter to a function, and

ä when a temporary object is created for use as a return value of a function.

125

TEACH YOURSELF
C++

The copy constructor only applies to initializations. It does not apply to assignments.

By default, when an initialization occurs, the compiler will automatically provide a bitwise
copy. (That is, C++ automatically provides a default copy constructor that simply duplicates
the object.) However, it is possible to specify precisely how one object will initialize another by
defining a copy constructor. Once defined, the copy constructor is called whenever an object is
used to initialize another.

Remember: Copy constructors do not affect assignment operations.

The most common form of copy constructor is shown here:

classname(const classname &obj)

{

// body of constructor

}

Here obj is a reference to an object that is being used to initialize another object. For exam-
ple, assuming a class called myclass, and that y is an object of type myclass, the following
statements would invoke the myclass copy constructor:

myclass x = y; // y explicitly initializing x

fun1(y); // y passed as a parameter

y = func2(); // y receiving a returned object

In the first two cases, a reference to y would be passed to the copy constructor. In the third, a
reference to the object returned by func() is passed to the copy constructor.

EXAMPLES

1. Here is an example that illustrates why an explicit copy constructor function is needed.
This program creates a very limited ”safe” integer array type that prevents array bound-
aries from being overrun. Storage for each array is allocated using new, and a pointer to
the memory is maintained within each array object.

/*

This program creates a "safe" array class. Since space

for the array is dynamically allocated , a copy constructor

is provided to allocate memory when one array object is

used to initialize another.

*/

#include <iostream >

#include <cstdlib >

using namespace std;

class array

{

int *p;

int size;

public:

array(int sz) // constructor

{

p = new int[sz];

if(!p)

exit (1);

size = sz;

cout << "Using ’normal ’ constructor\n";

126

FUNCTION OVERLOADING
5.2. CREATING AND USING A COPY CONSTRUCTOR

}

~array () { delete [] p; }

//copy constructor

array(const array &a);

void put(int i, int j)

{

if(i>=0 && i<size)

p[i] = j;

}

int get(int i)

{

return p[i];

}

};

/*

Copy constructor

In the following , memory is allocated specifically

for the copy , and the address of this memory is assigned

to p. Therefore , p is not pointing to the same

dynamically allocated memory as the original object.

*/

array ::array(const array &a)

{

int i;

size = a.size;

p = new int[a.size]; // allocate memory for copy

if(!p)

exit (1);

for(i=0; i<a.size; i++)

p[i] = a.p[i]; // copy contents

cout << "Using copy constructor\n";

}

int main()

{

array num (10); // this calls "normal" constructor

int i;

// put some values into the array

for(i=0; i<10; i++)

num.put(i, i);

// display num

for(i=9; i>=0; i--)

cout << num.get(i);

cout << "\n";

127

TEACH YOURSELF
C++

// create another array and initialize with num

array x = num; // this invokes copy constructor

// display x

for(i=0; i<10; i++)

cout << x.get(i);

return 0;

}

When num is used to initialize x, the copy constructor is called, memory for the new
array is allocated and stored in x.p, and the contents of num are copied to x’s array. In
this way, x and num have arrays that have the same values, but each array is separate
and distinct. (That is, num.p and x.p do not point to the same piece of memory.) If the
copy constructor had not been created, the bitwise initialization array x = num would
have resulted in x and num sharing the same memory for their arrays! (That is, num.p
and x.p would have, indeed, pointed to the same location.)

The copy constructor is called only for initializations. For example, the following sequence
does not call the copy constructor defined in the preceding program:

array a(10);

array b(10);

b = a; // does not call copy constructor

In this case, b = a performs the assignment operation.

2. To see how the copy constructor helps prevent some of the problems associated with
passing certain types of objects to functions, consider this (incorrect) program:

// This program has an error.

#include <iostream >

#include <cstring >

#include <cstdlib >

using namespace std;

class strtype

{

char *p;

public:

strtype(char *s);

~strtype () { delete [] p; }

char *get() { return p; }

};

strtype :: strtype(char *s)

{

int l;

l = strlen(s)+1;

p = new char [l];

128

FUNCTION OVERLOADING
5.2. CREATING AND USING A COPY CONSTRUCTOR

if(!p)

{

cout << "Allocation error\n";

exit (1);

}

strcpy(p, s);

}

void show(strtype x)

{

char *s;

s = x.get();

cout << s << "\n";

}

int main()

{

strtype a("Hello"), b("There");

show(a);

show(b);

return 0;

}

In this program, when a strtype object is passed to show(), a bitwise copy is made (since
no copy constructor has been defined) and put into parameter x. Thus, when the function
returns, x goes out of scope and is destroyed. This, of course, causes x’s destructor to
be called, which frees x.p. However, the memory being freed is the same memory that is
still being used by the object used to call the function. This results in an error.

The solution to the preceding problem is to define a copy constructor for the strtype
class that allocates memory for the copy when the copy is created. This approach is used
by the following, corrected, program:

/*

This program uses a copy constructor to allow strtype

objects

to be passed to functions.

*/

#include <iostream >

#include <cstring >

#include <cstdlib >

using namespace std;

class strtype

{

char *p;

public:

strtype(char *s); // constructor

strtype(const strtype &o); // copy constructor

129

TEACH YOURSELF
C++

~strtype () { delete [] p; } // destructor

char *get() { return p; }

};

// "Normal" constructor

strtype :: strtype(char *s)

{

int l;

l = strlen(s)+1;

p = new char [l];

if(!p)

{

cout << "Allocation error\n";

exit (1);

}

strcpy(p, s);

}

// Copy constructor

strtype :: strtype(const strtype &o)

{

int l;

l = strlen(o.p)+1;

p = new char [l]; // allocate memory for new copy

if(!p)

{

cout << "Allocation error\n";

exit (1);

}

strcpy(p, o.p); // copy string into copy

}

void show(strtype x)

{

char *s;

s = x.get();

cout << s << "\n";

}

int main()

{

strtype a("Hello"), b("There");

show(a);

130

FUNCTION OVERLOADING
5.2. CREATING AND USING A COPY CONSTRUCTOR

show(b);

return 0;

}

Now when show() terminates and x goes out of scope, the memory pointed to by x.p
(which will be freed) is not the same as the memory still in use by the object passed to
the function.

EXERCISES

1. The copy constructor is also invoked when a function generates the temporary object that
is used as the function’s return value (for those functions that return objects). With this
in mind, consider the following output:

Constructing normally

Constructing normally

Constructing copy

This output was created by the following program. Explain why, and describe precisely
what is occurring.

#include <iostream >

using namespace std;

class myclass

{

public:

myclass ();

myclass(const myclass &o);

myclass f();

};

// Normal constructor

myclass :: myclass ()

{

cout << "Constructing normally\n";

}

// Copy constructor

myclass :: myclass(const myclass &o)

{

cout << "Constructing copy\n";

}

// Return an object.

myclass myclass ::f()

{

myclass temp;

return temp;

}

131

TEACH YOURSELF
C++

int main()

{

myclass obj;

obj = obj.f();

return 0;

}

2. Explain what is wrong with the following program and then fix it.

// This program contains an error.

#include <iostream >

#include <cstdlib >

using namespace std;

class myclass

{

int *p;

public:

myclass(int i);

~myclass () { delete p; }

friend int getval(myclass o);

};

myclass :: myclass(int i)

{

p = new int;

if(!p)

{

cout << "Allocation error\n";

exit (1);

}

*p = i;

}

int getval(myclass o)

{

return *o.p; // get value

}

int main()

{

myclass a(1), b(2);

cout << getval(a) << " " << getval(b);

cout << "\n";

cout << getval(a) << " " << getval(b);

return 0;

}

132

FUNCTION OVERLOADING
5.3. THE OVERLOAD ANACHRONISM

3. In your own words, explain the purpose of a copy constructor and how it differs from a
normal constructor.

5.3 THE OVERLOAD ANACHRONISM

When C++ was first invented, the keyword overload was required to create an overloaded
function. Although overload is now obsolete and no longer supported by modern C++ com-
pilers, you may still see overload used in old programs, so it is a good idea to understand how
it was applied.

The general form of overload is shown here,

overload func_name;

where func-name is the name of the function to be overloaded. This statement must precede
the overloaded function declarations. For example, this tells the compiler that you will be
overloading a function called time():

overload timer;

Remember: overload is obsolete and no longer supported by modern C++ compilers.

5.4 USING DEFAULT ARGUMENTS

There is a feature of C++ that is related to function overloading. This feature is called the
default argument, and it allows you to give a parameter a default value when no corresponding
argument is specified when the function is called. As you will see, using default arguments is
essentially a shorthand form of function overloading.

To give a parameter a default argument, simply follow that parameter with an equal sign and
the value you want it to default to if no corresponding argument is present when the function
is called. For example, this function gives its two parameters default values of 0:

void f(int a=0, int b=0);

Notice that this syntax is similar to variable initialization. This function can now be called
three different ways. First, it can be called with both arguments specified. Second, it can be
called with only the first argument specified. In this case, b will default to 0. Finally, f()
can be called with no arguments, causing both a and b to default to 0. That is the following
invocations of f() are all valid:

f(); // a and b default to 0

f(10); // a is 10, b defaults to 0

f(10, 99); // a is 10, b is 99

In this example, it should be clear that there is no way to default a and specify b.

When you create a function that has one or more default arguments, those arguments must
be specified only once: either in the function’s prototype or in its definition if the definition
precedes the function’s first use. The defaults cannot be specified in both the prototype and
the definition. This rule applies even if you simply duplicate the same defaults.

As you can probably guess, all default parameters must be to the right of any parameters that
don’t have defaults. Further, once you begin to define default parameters, you cannot specify
any parameters that have no defaults.

One other point about default arguments: they must be constants or global variables. They
cannot be local variables or other parameters.

133

TEACH YOURSELF
C++

EXAMPLES

1. Here is a program that illustrates the example described in the preceding discussion:

// A simple first example of default arguments.

#include <iostream >

using namespace std;

void f(int a=0, int b=0)

{

cout << "a: " << a << ", b: " << b;

cout << ’\n’;

}

int main()

{

f();

f(10);

f(10, 99);

return 0;

}

As you should expect, this program displays the following output:

a: 0, b: 0

a: 10, b: 0

a: 10, b: 99

Remember that once the first default argument is specified, all following parameters must
have defaults as well. For example, this slightly different version of f() causes a compile-
time error:

void f(int a=0, int b) // wrong! b must have default , too

{

cout << "a: " << a << ", b: " << b;

cout << ’\n’;

}

2. To understand how default arguments are related to function overloading, first consider
the next program, which overloads the function called rect area(). This function returns
the area of a rectangle.

// Compute area of a rectangle using overloaded functions.

#include <iostream >

using namespace std;

// Return area of a non -square rectangle.

double rect_area(double length , double width)

{

return length * width;

}

// Return area of a square

134

FUNCTION OVERLOADING
5.4. USING DEFAULT ARGUMENTS

double rect_area(double length)

{

return length * length;

}

int main()

{

cout << "10 x 5.8 rectangle has area: ";

cout << rect_area (10.0, 5.8) << ’\n’;

cout << "10 x 10 square has area: ";

cout << rect_area (10.0) << ’\n’;

return 0;

}

Int his program, rect area() is overloaded two ways. In the first way, both dimensions
of a rectangle are passed to the function. This version is used when the rectangle is not a
square. However, when the rectangle is a square, only one argument need to be specified,
and the second version of rect area() is called.

If you think about it, it is clear that in this situation there is really no need to have two
different functions. Instead, the second parameter can be defaulted to some value that
acts as a flag to rect area(). When this value is seen by the function, it uses the length
parameter twice. Here is an example of this approach:

// Compute area of a rectangle using default arguments.

#include <iostream >

using namespace std;

// Return area of a rectangle.

double rect_area(double length , double width = 0)

{

if(! width)

width = length;

return length * width;

}

int main()

{

cout << "10 x 5.8 rectangle has area: ";

cout << rect_area (10.0, 5.8) << ’\n’;

cout << "10 x 10 square has area: ";

cout << rect_area (10.0) << ’\n’;

return 0;

}

Here 0 is the default value of width. This value was chosen because no rectangle will
have a width of 0. (Actually, a rectangle with a width of 0 is a line.) Thus, if this default
value is seen, rect area() automatically uses the value in length for the value of width.

As this example shows, default arguments often provide a simple alternative to function

135

TEACH YOURSELF
C++

overloading. (Of course, there are many situations in which function overloading is still
required.)

3. It is not only legal to give constructor functions default arguments, it is also common.
As you saw earlier in this chapter, many times a constructor is overloaded simply to
allow both initialized and uninitialized objects to be created. In many cases, you can
avoid overloading a constructor by giving it one or more default arguments. For example,
examine this program:

#include <iostream >

using namespace std;

class myclass

{

int x;

public:

/*

Use default argument instead of overloading

myclass ’s constructor.

*/

myclass(int n = 0) { x = n; }

int getx() { return x; }

};

int main()

{

myclass o1(10); // declare with initial value

myclass o2; // declare without initializer

cout << "o1: " << o1.getx() << ’\n’;

cout << "o2: " << o2.getx() << ’\n’;

return 0;

}

As this example shows, by giving n the default value of 0, it is possible to create objects
that have explicit initial values and those for which the default value is sufficient.

4. Another good application for a default argument is found when a parameter is used to
select an option. It is possible to give that parameter a default value that is used as a flag
that tells the function to continue to use the previously selected option. For example, in
the following program, the function print() displays a string on the screen. If its how
parameter is set to ignore, the text is displayed as is. If how is upper, the text is
displayed in uppercase. If how is lower, the text is displayed in lowercase. When how
is not specified, it defaults to -1, which tells the function to reuse the last how value.

#include <iostream >

#include <cctype >

using namespace std;

const int ignore = 0;

const int upper = 1;

const int lower = 2;

136

FUNCTION OVERLOADING
5.4. USING DEFAULT ARGUMENTS

void print(char *s, int how = -1);

int main()

{

print("Hello There\n", ignore);

print("Hello There\n", upper);

print("Hello There\n"); // continue in upper

print("Hello There\n", lower);

print("That’s all\n"); // continue in lower

return 0;

}

/*

Print a string in the specified case. Use

last case specified if none is given.

*/

void print(char *s, int how)

{

static int oldcase = ignore;

// reuse old case if none specified

if(how <0)

how = oldcase;

while (*s)

{

switch(how)

{

case upper: cout << (char) toupper (*s);

break;

case lower: cout << (char) tolower (*s);

break;

default: cout << *s;

}

s++;

}

oldcase = how;

}

This function displays the following output:

Hello There

HELLO THERE

HELLO THERE

hello there

that’s all

5. Earlier in this chapter, you saw the general form of a copy constructor. This general form
was shown with only one parameter. However, it is possible to create copy constructors
that take additional arguments, as long as the additional arguments have default values.
For example, the following is also an acceptable form of a copy constructor:

137

TEACH YOURSELF
C++

myclass(const myclass &obj , int x = 0)

{

// body of constructor

}

As long as the first argument is a reference to the object being copied, and all other
arguments default, the function qualifies as a copy constructor. This flexibility allows you
to create copy constructors that have other uses.

6. Although default arguments are powerful and convenient, when used correctly, default
arguments allow a function to perform its job in an efficient and easy-to-use manner.
However, this is only the case when the default value given to a parameter makes sense.
For example, if the argument is the value wanted nine times out of ten, giving a function
a default argument to this effect is obviously a good idea. However, in cases in which no
one value is more likely to be used than another, or when there is no benefit to using a
default argument as a flag value, it makes little sense to provide a default value. Actually,
providing a default argument when one is not called for destructures your program and
tends to mislead anyone else who has to use that function.

As with function overloading, part of becoming an excellent C++ programmer is knowing
when to use a default argument and when not to.

EXERCISES

1. In the C++ standard library is the function strtoi(), which has this prototype:

long strtoi(const char *start , const **end , int base);

The function converts the numeric string pointed to by start into a long integer. The
number base of the numeric string is specified by base. Upon return, end points to the
character in the string immediately following the end of the number. The long integer
equivalent of the numeric string is returned. base must be in the range 2 to 38. However,
most commonly, base 10 is used.

Create a function called mystrtoi() that works the same as strtoi() except that (base)
is given the default argument of 10. (Feel free to use strtoi() to actually perform the
conversion. It requires the header <cstdlib>.) Demonstrate that your version works
correctly.

2. What is wrong with the following function prototype?

char *f(char *p, int x = 0, char *q);

3. Most C++ compilers supply nonstandard functions that allow cursor positioning and the
like. If your compiler supplies such functions, create a function called myclreol() that
clears the line from the current cursor position to the end of the line. However, give
this function a parameter that specifies the number of character positions to clear. If the
parameter is not specified, automatically clear the entire line. Otherwise, clear only the
number of character positions specified by the parameter.

4. What is wrong with the following prototype, which uses a default argument?

int f(int count , int max = count);

138

FUNCTION OVERLOADING
5.5. OVERLOADING AND AMBIGUITY

5.5 OVERLOADING AND AMBIGUITY

When you are overloading functions, it is possible to introduce ambiguity into your program.
Overloading-caused ambiguity can be introduced through type conversions, reference parame-
ters, and default arguments. Further, some types of ambiguity are caused by the overloaded
functions themselves. Other types occur in the manner in which an overloaded function is
called. Ambiguity must be removed before your program will compile without error.

EXAMPLES

1. One of the most common types of ambiguity is caused by C++’s automatic type conversion
rules. As you know, when a function is called with an argument that is of a compatible
(but not the same) type as the parameter to which it is being passed, the type of the
argument is automatically converted to the target type. In fact, it is this sort of type
conversion that allows a function such as putchar() to be called with a character even
though its argument is specified as an int. However, in some cases, this automatic type
conversion will cause an ambiguous situation when a function is overloaded. To see how,
examine this program:

// This program contains an ambiguity error.

#include <iostream >

using namespace std;

float f(float i)

{

return i / 2.0;

}

double f(double i)

{

return i / 3.0;

}

int main()

{

float x = 10.09;

double y = 10.09;

cout << f(x); // unambiguous - use f(float)

cout << f(y); // unambiguous - use f(double)

cout << f(10); // ambiguous , convert 10 to double or

float??

return 0;

}

As the comments in main() indicate, the compiler is able to select the correct version of
f() when it is called with either a float or a double variable. However, what happens
when it is called with an integer? Does the compiler call f(float) or f(double)? (Both
are valid conversions!) In either case, it is valid to promote an integer into either a float
or a double. Thus, the ambiguous situation is created.

139

TEACH YOURSELF
C++

This example also points out that ambiguity can be introduced by the way an overloaded
function is called. The fact is that there is no inherent ambiguity in the overloaded versions
of f() as long as each is called with an unambiguous argument.

2. Here is another example of function overloading that is not ambiguous in and of itself.
However, when this function is called with the wrong type of argument, C++’s automatic
conversion rules cause an ambiguous situation,

// This program is ambiguous.

#include <iostream >

using namespace std;

void f(unsigned char c)

{

cout << c;

}

void f(char c)

{

cout << c;

}

int main()

{

f(’c’);

f(86); // which f() is called ???

return 0;

}

Here, when f() is called with the numeric constant 86, the compiler cannot know whether
to call f(unsigned char) or f(char). Either conversion is equally valid, thus leading to
ambiguity.

3. One type of ambiguity is caused when you try to overload functions in which the only
difference is the fact that one uses a reference parameter and the other uses the default
call-by-value parameter. Given C++’s formal syntax, there is no way for the compiler to
know which function to call. Remember, there is no syntactical difference between calling
a function that takes a value parameter and calling a function that takes a reference
parameter. For example:

// An ambiguous program.

#include <iostream >

using namespace std;

int f(int a, int b)

{

return a+b;

}

// this is inherently ambiguous

int f(int a, int &b)

{

return a-b;

140

FUNCTION OVERLOADING
5.5. OVERLOADING AND AMBIGUITY

}

int main()

{

int x=1, y=2;

cout << f(x, y); // which version of f() is called ???

return 0;

}

Here, f(x, y) is ambiguous because it could be calling either version of the function. In
fact, the compiler will flag an error before this statement is even specified because the
overloading of the two functions is inherently ambiguous and no reference to them could
be resolved.

4. Another type of ambiguity is caused when you are overloading a function in which one or
more overloaded functions use a default argument. Consider this program:

// Ambiguity based on default arguments plus overloading.

#include <iostream >

using namespace std;

int f(int a)

{

return a*a;

}

int f(int a, int b = 0)

{

return a*b;

}

int main()

{

cout << f(10, 2); // calls f(int , int)

cout << f(10); // ambiguous - call f(int) or f(int , int)?

return 0;

}

Here the call f(10, 2) is perfectly acceptable, and unambiguous. However, the compiler
has now way of knowing whether the call f(10) is calling the first version of f() or the
second version with b defaulting.

EXERCISE

1. Try to compile each of the preceding ambiguous programs. Make a mental note of the
types of error messages they generate. This will help you recognize ambiguity errors when
they creep into your own programs.

141

TEACH YOURSELF
C++

5.6 FINDING THE ADDRESS OF AN OVERLOADED FUNC-
TION

To conclude this, chapter, you will learn how to find the address of an overloaded function.
Just as in C, you can assign the address of a function (that is, its entry point) to a pointer and
access that function via that pointer. A function’s address is obtained by putting its name on
the right side of an assignment statement without any parentheses or arguments. For example,
if zap() is a function, assuming proper declarations, this is a valid way to assign p the address
of zap():

p = zap;

In C, any type of pointer can be used to point to a function because there is only one function
that it can point to. However, in C++ the situation is a bit more complex because a function
can be overloaded. Thus, there must be some mechanism that determines which function’s
address is obtained.

The solution is both elegant and effective. When obtaining the address of an overloaded function,
it is the way the pointer is declared that determines which overloaded function’s address will
be obtained. In essence, the pointer’s declaration is matched against those of the overloaded
functions. The function whose declaration matches is the one whose address is used.

EXAMPLE

1. Here is a program that contains two versions of a function called space(). The first
version outputs count number of spaces to the screen. The second version outputs count
number of whatever type of character is passed to ch. In main(), two function pointers
are declared.The first one is specified as a pointer to a function having only one integer
parameter. The second is declared as a pointer to a function taking two parameters.

/*

Illustrate assigning function pointers to

overloaded functions.

*/

#include <iostream >

using namespace std;

// Output count number of spaces.

void space(int count)

{

for(; count; count --)

cout << ’ ’;

}

// Output count number of chs.

void space(int count , char ch)

{

for(; count; count --)

cout << ch;

}

int main()

{

/*

142

FUNCTION OVERLOADING
SKILLS CHECK

Create a pointer to void function with

one int parameter

*/

void (*fp1)(int);

/*

Create a pointer to void function with

one int parameter and one character parameter.

*/

void (*fp2)(int , char);

fp1 = space; // gets address of space(int)

fp2 = space; // gets address of space(int , char)

fp1 (22); // output 22 spaces

cout << "|\n";

fp2(30, ’x’); // output 30 x’s

cout << "|\n";

return 0;

}

As the comments illustrate, the compiler is able to determine which overloaded function
to obtain the address of based upon how fp1 and fp2 are declared.

To review: When you assign the address of an overloaded function to a function pointer,
it is the declaration of the pointer that determines which function’s address is assigned.
Further, the declaration of the function pointer must exactly match one and only one of the
overloaded functions. If it does not, ambiguity will be introduced, causing a compile-time
error.

EXERCISE

1. Following are two overloaded functions. Show how to obtain the address of each.

int dif(int a, int b)

{

return a-b;

}

float dif(float a, float b)

{

return a-b;

}

SKILLS CHECK

Mastery Skills Check

At this point you should be able to perform the following exercises and answer the questions.

143

TEACH YOURSELF
C++

1. Overload the date() constructor from Section 5.1, Example 3, so that it accepts a pa-
rameter of type time t. (Remember, time t is a type defined by the standard time and
date functions found in your C++ compiler’s library.)

2. What is wrong with the following fragment?

class samp

{

int a;

public:

samp(int i) { a = i; }

// ...

};

//...

int main()

{

samp x, y(10);

// ...

}

3. Give two reasons why you might want (or need) to overload a class’s constructor.

4. What is the most common general form of a copy constructor?

5. What type of operations will cause the copy constructor to be invoked?

6. Briefly explain what the overload keyword does and why it is no longer needed.

7. Briefly describe a default argument.

8. Create a function called reverse() that takes two parameters. The first parameter, called
str, is a pointer to a string that will be reversed upon return from the function. The
second parameter is called count, and it specifies how many characters of str to reverse.
Give count a default value that, when present, tells reverse() to reverse the entire string.

9. What is wrong with the following prototype?

char *wordwrap(char *str , int size = 0, char ch);

10. Explain some ways that ambiguity can be introduced when you are overloading functions.

11. What is wrong with the following fragment?

void compute(double *num , int divisor =1);

void compute(double *num);

// ...

compute (&x);

12. When you are assigning the address of an overloaded function to a pointer, what is it that
determines which version of the function is used?

144

FUNCTION OVERLOADING
SKILLS CHECK

Cumulative Skills Check

This section checks how well you have integrated material in this chapter with that from the
preceding chapters.

1. Create a function called order() that takes two integer reference parameters. If the first
argument is greater than the second argument, reverse the two arguments. Otherwise,
take no action. That is order the two arguments used to call order() so that, upon return,
the first argument will be less than the second. For example, given

int x=1, y=0;

order(x, y);

following the call, x will be 0 and y will be 1.

2. Why are the following two overloaded functions inherently ambiguous?

int f(int a);

int f(int &a);

3. Explain why using a default argument is related to function overloading.

4. Given the following partial class, add the necessary constructor functions so that both
declarations within main() are valid. (Hint: You need to overload samp() twice.)

class samp

{

int a;

public:

// add constructor functions

int get_a() { return a; }

};

int main()

{

samp ob(88); // init ob’s a to 88

samp obarray [10]; // non -initialized 10-element array

// ...

}

5. Briefly explain why copy constructors are needed.

145

TEACH YOURSELF
C++

This Page
(Not)

Intentionally Left Blank.

146

6
Introducing Operator Overloading

Chapter Objectives

6.1 The basics of operator overloading

6.2 Overloading binary operators

6.3 Overloading the relational and logical operators

6.4 Overloading a unary operator

6.5 Using friend operator functions

6.6 A closer look at the assignment operator

6.7 Overloading the [] subscript operator

147

TEACH YOURSELF
C++

This chapter introduces another important C++ feature: operator overloading. This feature
allows you to define the meaning of the C++ operators relative to classes that you define.

By overloading operators, you can seamlessly add new data types to you program.

Review Skills Check

Before proceeding, you should be able to correctly answer the following questions and do the
exercises.

1. Show how to overload the constructor for the following class so that uninitialized objects
can also be created. (When creating uninitialized objects, give x and y the value 0.)

class myclass

{

int x, y;

public:

myclass(int i, int j) { x=i; y=j; }

//

};

2. Using the class from Question 1, show how you can avoid overloading myclass() by using
default arguments.

3. What is wrong with these two overloaded functions?

void f(int a);

void f(int &a);

4. When is it appropriate to use default arguments? When is it probably a bad idea?

5. Given the following class definition, is it possible to dynamically allocate an array of these
objects?

class test

{

char *p;

int *q;

int count;

public:

test(char *x, int *y, int c)

{

p = x;

q = y;

count = c;

}

// ...

};

6. What is a copy constructor and under what circumstances is it called?

6.1 THE BASICS OF OPERATOR OVERLOADING

Operator overloading resembles function overloading. In fact, operator overloading is really just
a type of function overloading. However, some additional rules apply. For example, an operator

148

INTRODUCING OPERATOR OVERLOADING
6.1. THE BASICS OF OPERATOR OVERLOADING

is always overloaded relative to a user-defined type, such as a class. Other differences will be
discussed as needed.

When an operator is overloaded, that operator loses none of its original meaning. Instead, it
gains additional meaning relative to the class for which it is defined.

To overload an operator, you create an operator function. Most often an operator function is
a member or a friend of the class for which it is defined. However, there is a slight difference
between a member operator function and a friend operator function. The first part of this
chapter discusses the creation of member operator functions. Then friend operator functions
are discussed.

The general form of a member operator function is shown here:

return_type class_name :: operator #(arg_list)

{

// operation to be performed

}

The return type of an operator function is often the class for which it is defined. (However, an
operator function is free to return any type.) The operator being overloaded is substituted for
the #. For example, if the + is being overloaded, the function name would be operator +.
The contents of arg-list vary depending upon how the operator function is implemented and
the type of operator being overloaded.

There are two important restrictions to remember when you are overloading an operator. First,
the precedence of the operator cannot be changed. Second, the number of operands that an
operator takes cannot be altered. For example, you cannot overload the / operator so that it
takes only one operand.

Most C++ operators can be overloaded. The only operators that you cannot overload are shown
here:

. :: .* ?
Also, you cannot overload the preprocessor operators. (The .* operator is highly specialized
and is beyond the scope of this book.)

Remember that C++ defines operators very broadly, including such things as the [] subscript
operators, the () function call operators, new and delete, and the . (dot) and -> (arrow) op-
erators. However, this chapter concentrates on overloading the most commonly used operators.

Except for the =, operator functions are inherited by any derived class. However, a derived
class is free to overload any operator it chooses (including those overloaded by the base class)
relative to itself.

You have been using two overloaded operators: << and >>. These operators have been
overloaded to perform console I/O. As mentioned, overloading these operators to perform I/O
does not prevent them from performing their traditional jobs of left shift and right shift.

While it is permissible for you to have an operator function perform any activity-whether related
to the traditional use of the operator or not-it is best to have an overloaded operator’s actions
stay within the spirit of the operator’s traditional use. When you create overloaded operators
that stray from this principal, you run the risk of substantially destructuring your program. For
example, overloading the / so that the phrase ”I like C++” is written to a disk file 300 times
is a fundamentally confusing misuse of operator overloading!

The preceding paragraph notwithstanding, there will be times when you need to use an operator
in a way not related to its traditional usage. The two best examples of this are the << and >>
operators, which are overloaded for console I/O. However, even in these cases, the left and right
arrows provide a visual ”clue” to their meaning. Therefore, if you need to overload an operator
in a nonstandard way, make the greatest effort possible to use an appropriate operator.

One final point: operator functions cannot have default arguments.

149

TEACH YOURSELF
C++

6.2 OVERLOADING BINARY OPERATORS

When a member operator function overloads a binary operator, the function will have only one
parameter. This parameter will receive the object that is on the right side of the operator. The
object on the left side is the object that generates the call to the operator function and is passed
implicitly by this.
It is important to understand that operator functions can be written with many variations. The
examples here and elsewhere in this chapter are not exhaustive, but they do illustrate several
of the most common techniques.

EXAMPLES

1. The following program overloads the + operator relative to the coord class. This class
is used to maintain X, Y coordinates.

// Overload the + relative to coord class

#include <iostream >

using namespace std;

class coord

{

int x, y; // coordinate values

public:

coord () { x=0; y=0; };

coord(int i, int j) { x=i; y=j; }

void get_xy(int &i, int &j) { i=x; j=y; }

coord operator +(coord ob2);

};

// Overload + relative to coord class.

coord coord :: operator +(coord ob2)

{

coord temp;

temp.x = x + ob2.x;

temp.y = y + ob2.y;

return temp;

}

int main()

{

coord o1(10, 10), o2(5, 3), o3;

int x, y;

o3 = o1 + o2; // add two objects - this calls operator+

o3.get_xy(x, y);

cout << "(o1+o2) X: " << x << ", Y: " << y << "\n";

return 0;

}

This program displays the following:

150

INTRODUCING OPERATOR OVERLOADING
6.2. OVERLOADING BINARY OPERATORS

(o1+o2) X: 15, Y: 13

Let’s look closely at this program. The operator+() function returns an object of type
coord that has the sum of each operand’s X coordinates in x and the sum of the Y
coordinates in y. Notice that a temporary object called temp is used inside operator+()
to hold the result, and it is this object that is returned. Notice also that neither operand
is modified. The reason for temp is easy to understand. In this situation (as in most), the
+ has been overloaded in a manner consistent with its normal arithmetic use. Therefor,
it was important that neither operand be changed. For example, when you add 10+4, the
result is 14, but neither the 10 nor the 4 is modified. Thus, a temporary object is needed
to hold the result.

The reason that the operator+() function returns an object of type coord is that it
allows the result of the addition of coord objects to be used in larger expressions. For
example, the statement

o3 = o1 + o2

is valid only because the result of o1 + o2 is a coord object that can be assigned to o3.
If a different type had been returned, this statement would have been invalid. Further, by
returning a coord object, the addition operator allows a string of additions. For example,
this is a valid statement:

o3 = o1 + o2 + o1 + o3;

Although there will be situations in which you want an operator function to return some-
thing other than an object for which it is defined, most of the time operator functions
that you create will return an object of their class. (The major exception to this rule is
when the relational and logical operators are overloaded. This situation is examined in
Section 6.3, ”Overloading the Relational and Logical Operators,” later in this chapter.)

One final point about this example. Because a coord object is returned, the following
statement is also perfectly valid:

(o1+o2).get_xy(x, y);

Here the temporary object returned by operator+() is used directly. Of course, after
this statement has executed, the temporary object is destroyed.

2. The following version of the preceding program overloads the - and the = operators
relative to the coord class.

// Overload the +, -, and = relative to coord class.

#include <iostream >

using namespace std;

class coord

{

int x, y; // coordinate values

public:

coord () { x=0; y=0; };

coord(int i, int j) { x=i; y=j; }

void get_xy(int &i, int &j) { i=x; j=y; }

coord operator +(coord ob2);

coord operator -(coord ob2);

coord operator =(coord ob2);

};

151

TEACH YOURSELF
C++

// Overload + relative to coord class.

coord coord :: operator +(coord ob2)

{

coord temp;

temp.x = x + ob2.x;

temp.y = y + ob2.y;

return temp;

}

// Overload - relative to coord class.

coord coord ::operator -(coord ob2)

{

coord temp;

temp.x = x - ob2.x;

temp.y = y - ob2.y;

return temp;

}

// Overload = relative to coord class.

coord coord :: operator =(coord ob2)

{

x = ob2.x;

y = ob2.y;

return *this; // return the object that is assigned

}

int main()

{

coord o1(10, 10), o2(5, 3), o3;

int x, y;

o3 = o1 + o2; // add two objects - this calls operator+

o3.get_xy(x, y);

cout << "(o1+o2) X: " << x << ", Y: " << y << "\n";

o3 = o1 - o2; // subtract two objects

o3.get_xy(x, y);

cout << "(o1 -o2) X: " << x << ", Y: " << y << "\n";

o3 = o1; // assign an object

o3.get_xy(x, y);

cout << "(o3=o1) X: " << x << ", Y: " << y << "\n";

return 0;

}

The operator-() function is implemented similarly to operator+(). However, the above
example illustrates a crucial point when you are overloading an operator in which the order

152

INTRODUCING OPERATOR OVERLOADING
6.2. OVERLOADING BINARY OPERATORS

of the operands is important. When the operator+() function was created, it did not
matter which order the operands were in. (That is, A + B is the same as B + A.) However,
the subtraction operation is order dependent. Therefore, to subtract the operand on the
right from the operand on the left. Because it is the left operand that generates the call
to operator-(), the subtraction must be in this order:

x - ob2.x;

Remember: When a binary operator is overloaded, the left operand is passed implicitly
to the function and the right operand is passed as an argument.

Now look at the assignment operator function. The first thing you should notice that the
left operand (that is, the object being assigned a value) is modified by the operation. This
is in keeping with the normal meaning of assignment. The second thing to notice is that
the function returns *this. That is, the operator=() function returns the object that is
being assigned to. The reason for this is to allow a series of assignments to be made. As
you should know, in C++, the following type of statement is syntactically correct (and
indeed very common):

a = b = c = d = 0;

By returning *this, the overloaded assignment operator allows objects of type coord to
be used in a similar fashion. For example, this is perfectly valid:

o3 = o2 = o1;

Keep in mind that there is no rule that requires an overloaded assignment function to
return the object that receives the assignment. However, if you want the overloaded = to
behave relative to its class the way it does for the built-in types, it must return *this.

3. It is possible to overload an operator relative to a class so that the operand on the right
side is an object of a built-in type, such as an integer, instead of the class for which the
operator function is a member. For example, here the + operator is overloaded to add an
integer value to a coord object:

// Overload the + for ob + int as well as ob + ob.

#include <iostream >

using namespace std;

class coord

{

int x, y; // coordinate values

public:

coord () { x=0; y=0; };

coord(int i, int j) { x=i; y=j; }

void get_xy(int &i, int &j) { i=x; j=y; }

coord operator +(coord ob2); // ob + ob

coord operator +(int i); // ob + int

};

// Overload + relative to coord class.

coord coord :: operator +(coord ob2)

{

coord temp;

temp.x = x + ob2.x;

temp.y = y + ob2.y;

153

TEACH YOURSELF
C++

return temp;

}

// Overload + for ob + int

coord coord :: operator +(int i)

{

coord temp;

temp.x = x + i;

temp.y = y + i;

return temp;

}

int main()

{

coord o1(10, 10), o2(5, 3), o3;

int x, y;

o3 = o1 + o2; // add two objects - calls operator +(coord)

o3.get_xy(x, y);

cout << "(o1+o2) X: " << x << ", Y: " << y << "\n";

o3 = o1 + 100; // add object + int - calls operator +(int)

o3.get_xy(x, y);

cout << "(o1 +100) X: " << x << ", Y: " << y << "\n";

return 0;

}

It is important to remember that when you are overloading a member operator function
so that an object can be used in an operation involving a built-in type, the built-in type
must be on the right side of the operator. The reason for this is easy to understand: It is
the object on the left that generates the call to the operator function. For instance, what
happens when the compiler sees the following statement?

o3 = 19 + o1; // int + ob

There is no built-in operation defined to handle the addition of an integer to an object.
The overloaded operator+(int i) function works only when the object is on the left.
Therefore, this statement generates a compile-time error. (Soon you will see one way
around this restriction.)

4. You can use a reference parameter in an operator function. For example, this is a perfectly
acceptable way to overload the + operator relative to the coord class:

// Overload + relative to coord class using references.

coord coord :: operator +(coord &ob2)

{

coord temp;

temp.x = x + ob2.x;

temp.y = y + ob2.y;

154

INTRODUCING OPERATOR OVERLOADING
6.3. OVERLOADING THE RELATIONAL AND LOGICAL OPERATORS

return temp;

}

One reason for using a reference parameter in an operator function is efficiency. Passing
objects as parameters to functions often incurs a large amount of overhead and consumes
a significant number of CPU cycles. However, passing the address of an object is always
quick and efficient. If the operator is going to be used often, using a reference parameter
will generally improve performance significantly.

Another reason for using a reference parameter is to avoid the trouble caused when a
copy of an operand is destroyed. As you know from previous chapters, when an argument
is passed by value, a copy of that argument is made. If that object has a destructor
function, when the function terminates, the copy’s destructor is called. In some cases it is
possible for the destructor to destroy something needed by the calling object. If this is the
case, using a reference parameter instead of a value parameter is an easy (and efficient)
way around the problem. Of course, you could also define a copy constructor that would
prevent this problem in the general case.

EXERCISES

1. Relative to coord, overload the * and / operators. Demonstrate that they work.

2. Why would the following be an inappropriate use of an overloaded operator?

coord coord :: operator %(coord ob)

{

double i;

cout << "Enter a number: ";

cin >> i;

cout << "root of " << i << " is ";

cout << sqrt(i);

}

3. On your own, experiment by changing the return types of the operator functions to some-
thing other than coord. See what types of errors result.

6.3 OVERLOADING THE RELATIONAL AND LOGICAL OP-
ERATORS

It is possible to overload the relational and logical operators. When you overload the relational
and logical operators so that they behave in their traditional manner, you will not want the
operator functions to return an object of the class for which they are defined. Instead, they
will return an integer that indicates either true or false. This not only allows these operator
functions to return a true/false value, it also allows the operators to be integrated into larger
relational and logical expressions that involve other types of data.

Note: If you are using a modern C++ compiler, you can also have an overloaded relational
or logical operator function return a value of type bool, although there is no advantage to doing
so. As explained in Chapter 1, the bool type defines only two values: true and false. These
values are automatically converted into nonzero and 0 values. Integer nonzero and 0 values are
automatically converted into true and false.

155

TEACH YOURSELF
C++

EXAMPLE
1. In the following program, the == and && operators are overloaded:

// Overload the == and && relative to coord class.

#include <iostream >

using namespace std;

class coord

{

int x, y; // coordinate values

public:

coord () { x=0; y=0; };

coord(int i, int j) { x=i; y=j; }

void get_xy(int &i, int &j) { i=x; j=y; }

int operator ==(coord ob2);

int operator &&(coord ob2);

};

// Overload the == operator for coord.

int coord:: operator ==(coord ob2)

{

return x==ob2.x && y==ob2.y;

}

// Overload the && operator for coord.

int coord:: operator &&(coord ob2)

{

return (x && ob2.x) && (y && ob2.y);

}

int main()

{

coord o1(10, 10), o2(5, 3), o3(10, 10), o4(0, 0);

if(o1==o2)

cout << "o1 same as o2\n";

else

cout << "o1 and o2 differs\n";

if(o1==o3)

cout << "o1 same as o3\n";

else

cout << "o1 and o3 differ\n";

if(o1&&o2)

cout << "o1 && o2 is true\n";

else

cout << "o1 && o2 is false\n";

if(o1&&o4)

cout << "o1 && o4 is true\n";

else

156

INTRODUCING OPERATOR OVERLOADING
6.4. OVERLOADING A UNARY OPERATOR

cout << "o1 && o4 is false\n";

return 0;

}

EXERCISE

1. Overload < and > operator relative to the coord class.

6.4 OVERLOADING A UNARY OPERATOR

Overloading a unary operator is similar to overloading a binary operator except that there is
only one operand to deal with. When you overload a unary operator using a member function,
the function has no parameters. Since there is only one operand, it is this operand that generates
the call to the operator function. There is no need for another parameter.

EXAMPLES

1. The following program overloads the increment operator (++) relative to the coord class

// Overload ++ relative to coord class.

#include <iostream >

using namespace std;

class coord

{

int x, y; // coordinate values

public:

coord () { x=0; y=0; };

coord(int i, int j) { x=i; y=j; }

void get_xy(int &i, int &j) { i=x; j=y; }

coord operator ++();

};

// Overload ++ for coord.

coord coord :: operator ++()

{

x++;

y++;

return *this;

}

int main()

{

coord o1(10, 10);

int x, y;

++o1; // increment an object

o1.get_xy(x, y);

cout << "(++o1) X: " << x << ", Y: " << y << "\n";

157

TEACH YOURSELF
C++

return 0;

}

Since the increment operator is designed to increase its operand by 1, the overloaded
++ modifies the object it operates upon. The function also returns the object that it
increments. This allows the increment operator to be used as part of a larger statement,
such as this:

o2 = ++o1;

As with the binary operators, there is no rule that says you must overload a unary operator
so that it reflects its normal meaning. However, most of the time this is what you will
want to do.

2. In early version of C++, when an increment or decrement operator was overloaded, there
was no way to determine whether an overloaded ++ or – preceded or followed its operand.
That is, assuming the preceding program, these two statements would have been identical:

o1++;

++o1;

However, the modern specification for C++ has defined a way by which the compiler can
distinguish between these two statements. To accomplish this, create two versions of the
operator++() function. The first is defined as shown in the preceding example. The
second is declared like this:

coord coord :: operator ++(int notused);

If the ++ operator precedes its operand, the operator++() function is called. However,
if the ++ follows its operand, the operator++(int notused) function is used. In this
case, notused will always be passed the value 0. Therefor, if the difference between prefix
and postfix increment or decrement is important to your class objects, you will need to
implement both operator functions.

3. As you know, the minus sign is both a binary and a unary operator in C++. You might
be wondering how you can overload it so that it retains both of these uses relative to a
class that you create. The solution is actually quite easy: you simply overload it twice,
once as a binary operator and once as a unary operator. This program shows how:

// Overload the - relative to coord class.

#include <iostream >

using namespace std;

class coord

{

int x, y; // coordinate values

public:

coord () { x=0; y=0; };

coord(int i, int j) { x=i; y=j; }

void get_xy(int &i, int &j) { i=x; j=y; }

coord operator -(coord ob2); // binary minus

coord operator -(); // unary minus

};

158

INTRODUCING OPERATOR OVERLOADING
6.4. OVERLOADING A UNARY OPERATOR

// Overload - relative to coord class.

coord coord ::operator -(coord ob2)

{

coord temp;

temp.x = x - ob2.x;

temp.y = y - ob2.y;

return temp;

}

// Overload unary - relative to coord class.

coord coord ::operator -()

{

x = -x;

y = -y;

return *this;

}

int main()

{

coord o1(10, 10), o2(5, 7);

int x, y;

o1 = o1 - o2; // subtraction

o1.get_xy(x, y);

cout << "(o1 -o2) X: " << x << ", Y: " << y << "\n";

o1 = -o1; // negation

o1.get_xy(x, y);

cout << "(-o1) X: " << x << ", Y: " << y << "\n";

return 0;

}

As you can see, when the minus is overloaded as a binary operator, it takes one parameter.
When it is overloaded as a unary operator, it takes no parameter. This difference in the
number of parameters is what makes it possible for the minus to be overloaded for both
operations. As the program indicates., when the minus sign is used as a binary operator,
the operator-(coord ob2) function is called. When it is used as a unary minus, the
operator-() function is called.

EXERCISES

1. Overload the – operator for the coord class. Create both its prefix and postfix forms.

2. Overload the + operator for the coord class so that it is both a binary operator (as shown
earlier) and a unary operator. When it is used as a unary operator, have the + make any
negative coordinate value positive.

159

TEACH YOURSELF
C++

6.5 USING FRIEND OPERATOR FUNCTIONS

As mentioned at the start of this chapter, it is possible to overload an operator relative to a
class by using a friend rather than a member function. As you know, a friend function does
not have a this pointer. In the case of a binary operator, this means that a friend operator
function is passed both operands explicitly. For unary operators, the single operand is passed.
All other things being equal, there is no reason to use a friend rather than a member operator
function, with one important exception, which is discussed in the examples.

Remember: You cannot use a friend to overload the assignment operator. The assignment
operator can be overloaded only by a member operator function.

1. Here operator+() is overloaded for the coord class using a friend function:

// Overload the + relative to coord class using a friend.

#include <iostream >

using namespace std;

class coord

{

int x, y; // coordinate values

public:

coord () { x=0; y=0; };

coord(int i, int j) { x=i; y=j; }

void get_xy(int &i, int &j) { i=x; j=y; }

friend coord operator +(coord ob1 , coord ob2);

};

// Overload + using a friend.

coord operator +(coord ob1 , coord ob2)

{

coord temp;

temp.x = ob1.x + ob2.x;

temp.y = ob1.y + ob2.y;

return temp;

}

int main()

{

coord o1(10, 10), o2(5, 3), o3;

int x, y;

o3 = o1 + o2; // add two objects - this calls operator +()

o3.get_xy(x, y);

cout << "(o1+o2) X: " << x << ", Y: " << y << "\n";

return 0;

}

Notice that the left operand is passed to the first parameter and the right operand is
passed to the second parameter.

160

INTRODUCING OPERATOR OVERLOADING
6.5. USING FRIEND OPERATOR FUNCTIONS

2. Overloading an operator by using a friend provides one very important feature that mem-
ber functions do not. Using a friend operator function, you can allow objects to be used
in operations involving built-in types in which the built-in type is on the left side of the
operator. As you saw earlier in this chapter, it is possible to overload a binary member
operator function such that the left operand is an object and the right operand is a built-in
type. But it is not possible to use a member function to allow the built-in type to occur
on the left side of the operator. For example, assuming an overload member operator
function, the first statement shown here is legal; the second is not:

ob1 = ob2 + 10; // legal

ob1 = 10 + ob2; // illegal

While it is possible to organize such statements like the first, always having to make sure
that the object is on the left side of the operand and the built-in type on the right can be
cumbersome restriction. The solution to this problem is to make the overloaded operator
functions friends and define both possible situations.

As you know, a friend operator function is explicitly passed both operands. Thus, it is
possible to define one overloaded friend function so that the left operand is an object and
the right operand is the other type. Then you could overload the operator again with the
left operand being the built-in type and the right operand being the object. The following
program illustrates this method:

// Use friend operator functions to add flexibility.

#include <iostream >

using namespace std;

class coord

{

int x, y; // coordinate values

public:

coord () { x=0; y=0; };

coord(int i, int j) { x=i; y=j; }

void get_xy(int &i, int &j) { i=x; j=y; }

friend coord operator +(coord ob1 , int i);

friend coord operator +(int i, coord ob1);

};

// Overload + for ob + int

coord operator +(coord ob1 , int i)

{

coord temp;

temp.x = ob1.x + i;

temp.y = ob1.y + i;

return temp;

}

// Overload + for int + ob

coord operator +(int i, coord ob1)

{

coord temp;

161

TEACH YOURSELF
C++

temp.x = ob1.x + i;

temp.y = ob1.y + i;

return temp;

}

int main()

{

coord o1(10, 10);

int x, y;

o1 = o1 + 10; // object + integer

o1.get_xy(x, y);

cout << "(o1+10) X: " << x << ", Y: " << y << "\n";

o1 = 99 + o1; // integer + object

o1.get_xy(x, y);

cout << "(99+o1) X: " << x << ", Y: " << y << "\n";

return 0;

}

As a result of overloading friend operator functions for both situations, both of these
statements are now valid:

o1 = o1 + 10;

o1 = 99 + o1;

3. If you want to use a friend operator function to overload either the ++ or – unary
operator, you must pass the operand to the function as a reference parameter. This is
because friend functions do not have this pointers. Remember that the increment and
decrement operators imply that the operand will be modified. However, if you overload
these operators by using a friend that uses a value parameter, any modifications that
occur to the parameter inside the friend operator function will not affect the object that
generated the call. And since no pointer to the object is passed implicitly (that is, there
is no this pointer) when a friend function is used, there is no way for the increment or
decrement to affect the operand.

However, if you pass the operand to the friend as a reference parameter, changes that
occur inside the friend function affect the object that generates the call. For example,
here is a program that overloads the ++ operator by using a friend function:

// Overload the ++ using a friend.

#include <iostream >

using namespace std;

class coord

{

int x, y; // coordinate values

public:

coord () { x=0; y=0; };

coord(int i, int j) { x=i; y=j; }

void get_xy(int &i, int &j) { i=x; j=y; }

friend coord operator ++(coord &ob);

162

INTRODUCING OPERATOR OVERLOADING
6.6. A CLOSER LOOK AT THE ASSIGNMENT OPERATOR

};

// Overload ++ using a friend.

coord operator ++(coord &ob) // use reference parameter

{

ob.x++;

ob.y++;

return ob;

}

int main()

{

coord o1(10, 10);

int x, y;

++o1; // o1 is passed by reference

o1.get_xy(x, y);

cout << "(++o1) X: " << x << ", Y: " << y << "\n";

return 0;

}

If you are using a modern compiler, you can also distinguish between the prefix and
the postfix forms of the increment or decrement operators when using a friend operator
function in much the same way you did when using member functions. You simply add an
integer parameter when defining the postfix version. For example, here are the prototypes
for both the prefix and postfix versions of the increment operator relative to the coord
class:

coord operator ++(coord &ob); // prefix

coord operator ++(coord &ob, int notused); // postfix

If the ++ precedes its operand, the operator++(coord &ob) function is called. How-
ever, if the ++ follows its operand, the operator++(coord &ob, int notused) func-
tion is used. In this case, notused will be passed the value 0.

EXERCISES

1. Overload the - and / operators for the coord class using friend functions.

2. Overload the coord class so it can use coord objects in operations in which an integer
value can be multiplied by each coordinate. Allow the operations to use either order: ob
* int or int * ob.

3. Explain why the solution to Exercise 2 requires the use of friend operator functions.

4. Using a friend, show how to overload the – relative to the coord class. Define both the
prefix and postfix forms.

6.6 A CLOSER LOOK AT THE ASSIGNMENT OPERATOR

As you have seen, it is possible to overload the assignment operator relative to a class. By
default, when the assignment operator is applied to an object, a bitwise copy of the object on

163

TEACH YOURSELF
C++

the right is put into the object on the left. If this is what you want, there is no reason to provide
your own operator=() function. However, there are cases in which a strict bitwise copy is not
desirable. You saw some examples of this in Chapter 3, in cases in which an object allocates
memory. In these types of situations, you will want to provide a special assignment operation.

EXAMPLES

1. Here is another version of the strtype class that you have seen in various forms in the
preceding chapters. However, this version overloads the = operator so that the pointer p
is not overwritten by an assignment operation.

#include <iostream >

#include <cstring >

#include <cstdlib >

using namespace std;

class strtype

{

char *p;

int len;

public:

strtype(char *s);

~strtype ()

{

cout << "Freeing " << (unsigned) p << ’\n’;

delete [] p;

}

char *get() { return p; }

strtype &operator =(strtype &ob);

};

strtype :: strtype(char *s)

{

int l;

l = strlen(s)+1;

p = new char [l];

if(!p)

{

cout << "Allocation error\n";

exit (1);

}

len = l;

strcpy(p, s);

}

// Assign an object.

strtype &strtype :: operator =(strtype &ob)

{

// see if more memory is needed

164

INTRODUCING OPERATOR OVERLOADING
6.6. A CLOSER LOOK AT THE ASSIGNMENT OPERATOR

if(len < ob.len) // need to allocate more memory

{

delete []p;

p = new char [ob.len];

if(!p)

{

cout << "Allocation error\n";

exit (1);

}

}

len = ob.len;

strcpy(p, ob.p);

return *this;

}

int main()

{

strtype a("Hello"), b("There");

cout << a.get() << ’\n’;

cout << b.get() << ’\n’;

a = b; // now p is not overwritten

cout << a.get() << ’\n’;

cout << b.get() << ’\n’;

return 0;

}

As you can see, the overloaded assignment operator prevents p from being overwritten.
It first checks to see if the object on the left has allocated enough memory to hold the
string that is being assigned to it. If it hasn’t, that memory is freed and another portion
is allocated. Then the string is copied to that memory and the length is copied into len.

Notice two other important features about the operator=() function. First, it takes a
reference parameter. This prevents a copy of the object on the right side of the assignment
from being made. As you know from previous chapters, when a copy of an object is made
when passed to a function, that copy is destroyed when the function terminates. In
this case, destroying the copy would call the destructor function, which would free p.
However, this is the same p still needed by the object used as an argument. Using a
reference parameter prevents this problem.

The second important feature of the operator=() function is that it returns a reference,
not an object. The reason for this is the same as the reason it uses a reference parameter.
When a function returns an object, a temporary object is created that is destroyed after
the return is complete. However, this means that the temporary object’s destructor will
be called, causing p to be freed, but p (and the memory it points to) is still needed by
the object being assigned a value. Therefore, by returning a reference, you prevent a
temporary object from being created.

Note: As you learned in Chapter 5, creating a coy constructor is another way to prevent
both of the problems described in the preceding two paragraphs. But the copy constructor
might not be as efficient a solution as using a reference parameter and a return reference

165

TEACH YOURSELF
C++

type. This is because using a reference prevents the overhead associated with copying an
object in either circumstances. As you can see, there are often several ways to accomplish
the same end in C++. Learning to choose between them is part of becoming an excellent
C++ programmer.

EXERCISES

1. Given the following class declaration, fill in all the details that will create a dynamic
array type. That is, allocate memory for the array, storing a pointer to this memory in
p. Store the size of the array, in bytes, in size. Have put() return a reference to the
specified element, and have get() return the value of a specified element. Don’t allow the
boundaries of the array to be overrun. Also, overload the assignment operator so that the
allocated memory of each array is not accidentally destroyed when one array is assigned to
another. (In the next section you will see a way to improve your solution to this exercise.)

class dynarray

{

int *p;

int size;

public:

dynarray(int s); // pass size of array in s

int &put(int i); // return reference to element i

int get(int i); // return value of element i

// create operator =() function

};

6.7 OVERLOADING THE [] SUBSCRIPT OPERATOR

The last operator that we will overload is the [] array subscripting operator. In C++, the []
is considered a binary operator for the purposes of overloading. The [] can be overloaded only
by a member function. Therefore, the general form of a member operator[]() function is as
shown here:

type class_name :: operator [](int index)

{

// ...

}

Technically, the parameter does not have to be of type int, but operator[]() functions are
typically used to provide array subscripting and as such an integer value is generally used.

To understand how the [] operator works, assume that an object called O is indexed as shown
here:

O[9];

This index will translate into the following call to the operator[]() function:

O.operator [](9)

That is, the value of the expression within the subscripting operator is passed to the operator[
]() function in its explicit parameter. The this pointer will point to O, the object that generated
the call.

166

INTRODUCING OPERATOR OVERLOADING
6.7. OVERLOADING THE [] SUBSCRIPT OPERATOR

EXAMPLES

1. In the following program, arraytype declares an array of five integers. Its constructor
function initializes each member of the array. The overloaded operator[]() function
returns the value of the element specified by its parameter.

#include <iostream >

using namespace std;

const int SIZE = 5;

class arraytype

{

int a[SIZE];

public:

arraytype ()

{

int i;

for(i=0; i<SIZE; i++)

a[i] = i;

}

int operator [](int i)

{

return a[i];

}

};

int main()

{

arraytype ob;

int i;

for(i=0; i<SIZE; i++)

cout << ob[i] << " ";

return 0;

}

This program displays the following output:

0 1 2 3 4

The initialization of the array a by the constructor in this and the following programs is
for the sake of illustration only. It is not required.

2. It is possible to design the operator[]() function in such a way that the [] can be used on
both the left and right sides of an assignment statement. To do this, return a reference to
the element being indexed. For example, this program makes this change and illustrates
its use:

#include <iostream >

using namespace std;

const int SIZE = 5;

167

TEACH YOURSELF
C++

class arraytype

{

int a[SIZE];

public:

arraytype ()

{

int i;

for(i=0; i<SIZE; i++)

a[i] = i;

}

int &operator [](int i)

{

return a[i];

}

};

int main()

{

arraytype ob;

int i;

for(i=0; i<SIZE; i++)

cout << ob[i] << " ";

cout << "\n";

// add 10 to each element in the array

for(i=0; i<SIZE; i++)

ob[i] = ob[i]+10; // [] on left of =

for(i=0; i<SIZE; i++)

cout << ob[i] << " ";

return 0;

}

This program displays the following output:

0 1 2 3 4

10 11 12 13 14

Because the operator[]() function now returns a reference to they array element indexed
by i, it can be used on the left side of an assignment to modify an element of the array.
(Of course, it can still be used on the right side as well.) As you can see, this makes
objects of arraytype act like normal arrays.

3. One advantage of being able to overload the [] operator is that it allows a better means
of implementing safe array indexing. Earlier in this book you saw a simplified way to
implement a safe array that relied upon functions such as get() and put() to access the
elements of the array. Here you will see a better way to create a safe array that utilizes an
overloaded [] operator. Recall that a safe array is an array that is encapsulated within a
class that performs bounds checking. This approach prevents the array boundaries from
being overrun. By overloading the [] operator for such an array, you allow it to be

168

INTRODUCING OPERATOR OVERLOADING
6.7. OVERLOADING THE [] SUBSCRIPT OPERATOR

accessed just like a regular array.

To create a safe array, simply add bounds checking to the operator[]() function. The
operator[]() must also return a reference to the element being indexed. For example,
this program adds a range check to the previous array program and proves that it works
by generating a boundary error:

// A safe array example.

#include <iostream >

#include <cstdlib >

using namespace std;

const int SIZE = 5;

class arraytype

{

int a[SIZE];

public:

arraytype ()

{

int i;

for(i=0; i<SIZE; i++)

a[i] = i;

}

int &operator [](int i);

};

// Provide range checking for arraytype.

int &arraytype :: operator [](int i)

{

if(i<0 || i>SIZE -1)

{

cout << "\nIndex value of ";

cout << i << " is out of bounds .\n";

exit (1);

}

return a[i];

}

int main()

{

arraytype ob;

int i;

// this is OK

for(i=0; i<SIZE; i++)

cout << ob[i] << " ";

/*

this generates a run -time error because

SIZE +100 is out of range

*/

ob[SIZE +100] = 99; // error

169

TEACH YOURSELF
C++

return 0;

}

In this program, when the statement

ob[SIZE +100] = 99;

executes, the boundary error is intercepted by operator[]() and the program is termi-
nated before any damage can be done.

Because the overloading of the [] operator allows you to create safe arrays that look
and act just like regular arrays, they can be seamlessly integrated into your programming
environment. But be careful. A safe array adds overhead that might not be acceptable
in all situations. In fact, the added overhead is why C++ does not perform boundary
checking on array in the first place. However, in applications in which you want to be
sure that a boundary error does not take place, a safe array will be worth the effort.

EXERCISES

1. ModifyExample 1 in Section 6.6 so that strtype overloads the [] operator. Have this
operator return the character at the specified index. Also, allow the [] to be used on the
left side of the assignment statement. Demonstrate its use.

2. Modify your answer to Exercise 1 from Section 6.6 so that it uses [] to index the dynamic
array. That is, replace the get() and put() functions with the [] operator.

SKILLS CHECK

Mastery Skills Check

At this point you should be able to perform the following exercises and answer the questions.

1. Overload the >> and << shift operator relative to the coord class so that the following
types of operations are allowed:

ob << integer

ob >> integer

Make sure your operations shift the x and y values by the amount specified.

2. Given the class

class three_d

{

int x, y, z;

public:

three_d(int i, int j, int k)

{

x = i; y = j; z = k;

}

three_d () { x=0; y=0; z=0; }

void get(int &i, int &j, int &k)

{

i = x; j = y; k = z;

}

};

170

INTRODUCING OPERATOR OVERLOADING
SKILLS CHECK

overload the +, -, ++, and – operators for this class. (For the increment and decrement
operators, overload only the prefix form.)

3. Rewrite your answer to Question 2 so that it uses reference parameters instead of value
parameters to the operator functions. (Hint: You will need to use friend functions for the
increment and decrement operators.)

4. How do friend operator functions differ from member operator functions?

5. Explain why you might need to overload the assignment operator.

6. Can operator=() be a friend function?

7. Overload the + for the three d class in Question 2 so that it accepts the following types
of operations:

ob + int;

int + ob;

8. Overload the ==, !=, and || operators relative to the three d class from Question 2.

9. Explain the main reason for overloading the [] operator.

Cumulative Skills Check

This section checks how well you have integrated material in this chapter with that from the
preceding chapters.

1. Create a strtype class that allows the following types of operators:

ä string concatenation using the + operator

ä string assignment using the = operator

ä string comparisons using <, >, and ==

Feel free to use fixed-length strings. This is a challenging assignment, but with some
thought (and experimentation), you should be able to accomplish it.

171

TEACH YOURSELF
C++

This Page Intentionally Left Blank.

Well, someone messed up...

172

7
Inheritance

Chapter Objectives

7.1 Base class access control

7.2 Using protected members

7.3 Constructors, destructors, and inheritance

7.4 Multiple inheritance

7.5 Virtual base classes

173

TEACH YOURSELF
C++

You were introduced to the concept of inheritance earlier in this book. Now it is time to
explore it more thoroughly. Inheritance is one of the three principles of OOP and, as such,

it is an important feature of C++. Inheritance does more than just support the concept of
hierarchical classification; in Chapter-10- you will learn how inheritance provides support for
polymorphism, another principal feature of OOP.
The topics covered in this chapter include base class access control and the protected access
specifier, inheriting multiple base classes, passing arguments to base class constructors, and
virtual base classes.

Review Skills Check

Before proceeding, you should be able to correctly answer the following questions and do the
exercises.

1. When an operator is overloaded, does it lose any of its original functionality?

2. Must an operator be overloaded relative to a user-defined type, such as a class?

3. Can the precedence of an overloaded operator be changed? Can the number of operands
be altered?

4. Given the following partially completed program, fill in the needed operator functions:

#include <iostream >

using namespace std;

class array

{

int nums [10];

public:

array ();

void set(int n[10]);

void show();

array operator +(array ob2);

array operator -(array ob2);

array operator ==(array ob2);

};

array ::array ()

{

int i;

for(i=0; i<10; i++)

nums[i] = 0;

}

void array::set(int *n)

{

int i;

for(i=0; i<10; i++)

nums[i] = n[i];

}

void array::show()

174

INHERITANCE

{

int i;

for(i=0; i<10; i++)

cout << nums[i] << ’ ’;

cout << "\n";

}

// Fill in operator functions.

int main()

{

array o1, o2, o3;

int i[10] = {1, 2, 3, 4, 5, 6, 7, 8 ,9 ,10 };

o1.set(i);

o2.set(i);

o3 = o1 + o2;

o3.show();

o3 = o1 - o3;

o3.show();

if(o1==o2)

cout << "o1 equals o2\n";

else

cout << "o1 does not equal o2\n";

if(o1==o3)

cout << "o1 equals o3\n";

else

cout << "o1 does not equal o3\n";

return 0;

}

Have the overloaded + add each element of each operand. Have the overloaded - subtract
each element of the right operand from the left. Have the overloaded == return true if
each element of each operand is the same and return false otherwise.

5. Convert the solution from Exercise 4 so it overloads the operators by using friend functions.

6. Using the class and support functions from Exercise 4, overload the ++ operator by
using a member function and overload the – operator by using a friend. (Overload only
the prefix forms of ++ and –.)

7. Can the assignment operator be overloaded by using a friend function?

175

TEACH YOURSELF
C++

7.1 BASE CLASS ACCESS CONTROL

When one class inherits another, it uses this general form:

class derived_class_name:access base_class_name

{

// ...

}

Here access is one of three keywords: public, private, or protected. A discussion of the
protected access specifier is deferred until the next section of this chapter. The other two are
discussed here.
The access specifier determines how elements of the base class are inherited by the derived
class. When the access specifier for the inherited base class is public, all public members of the
base become public members of the derived class. If the access specifier is private, all public
members of the base class become private members of the derived class. In either case, any
private members of the base remain private to it and are inaccessible by the derived class.
It is important to understand that if the access specifier is private, public members of the base
become private members of the derived class, but these members are still accessible by member
functions of the derived class.
Technically, access is optional. If the specifier is not present, it is private by default if the
derived class is a class. If the derived class is a struct, public is the default in the absence of
an explicit access specifier. Frankly, most programmers explicitly specify access for the sake of
clarity.

EXAMPLES

1. Here is a short base class and a derived class that inherits it (as public):

#include <iostream >

using namespace std;

class base

{

int x;

public:

void setx(int n) { x = n; }

void showx() { cout << x << ’\n’; }

};

// Inherit as public.

class derived : public base

{

int y;

public:

void sety(int n) { y = n; }

void showy() { cout << y << ’\n’; }

};

int main()

{

derived ob;

ob.setx (10); // access member of base class

176

INHERITANCE
7.1. BASE CLASS ACCESS CONTROL

ob.sety (20); // access member of derived class

ob.showx(); // access member of base class

ob.showy(); // access member of derived class

return 0;

}

As this program illustrates, because base is inherited as public, the public members
of base-setx() and showx()-become public members of derived and are, therefore,
accessible by any other part of the program. Specifically, they are legally called within
main().

2. It is important to understand that just because a derived class inherits a base as public,
it does not mean that the derived class has access to the base’s private members. For
example, this addition to derived from the preceding example is incorrect:

class base

{

int x;

public:

void setx(int n) { x = n; }

void showx() { cout << x << ’\n’; }

};

// Inherit as public - this has an error!

class derived : public base

{

int y;

public:

void sety(int n) { y = n; }

/*

Cannot access private member of base class.

x is a private member of base and not available

within derived.

*/

void show_sum () { cout << x+y << ’\n’; } // Error!

void showy() { cout << y << ’\n’; }

};

In this example, the derived class attempts to access x, which is a private member of
base. This is an error because the private parts of a base class remain private to it no
matter how it is inherited.

3. Here is a variation of the program shown in Example 1; this time derived inherits base
as private. This change causes the program to be in error, as indicated in the comments.

// This program contains an error.

#include <iostream >

using namespace std;

class base

{

177

TEACH YOURSELF
C++

int x;

public:

void setx(int n) { x = n; }

void showx() { cout << x << ’\n’; }

};

// Inherit base as private.

class derived : private base

{

int y;

public:

void sety(int n) { y = n; }

void showy() { cout << y << ’\n’; }

};

int main()

{

derived ob;

ob.setx (10); // ERROR - now private to derived class

ob.sety (20); // access member of derived class - OK

ob.showx(); // ERROR - now private to derived class

ob.showy(); // access member of derived class - OK

return 0;

}

As the comments in this (incorrect) program illustrate, both showx() and setx() become
private to derived and are not accessible outside of it.

Keep in mind that showx() and setx() are still public within base no matter how they
are inherited by some derived class. This means that an object of type base could access
these functions anywhere. However, relative to objects of type derived, they become
private. For example, given this fragment:

base base_ob;

base_ob.setx (1); // is legal because base_ob is of type base

the call to setx() is legal because setx() is public within base.

4. As stated, even though public members of a base class become private members of a
derived class when inherited using the private specifier, they are still accessible within
the derived class. For example, here is a *fixed* version of the preceding program:

// This program is fixed.

#include <iostream >

using namespace std;

class base

{

int x;

public:

178

INHERITANCE
7.1. BASE CLASS ACCESS CONTROL

void setx(int n) { x = n; }

void showx() { cout << x << ’\n’; }

};

// Inherit base as private.

class derived : private base

{

int y;

public:

// setx is accessible from within derived

void setxy(int n, int m) { setx(n); y = m; }

// show is accessible from within derived

void showxy () { showx(); cout << y << ’\n’; }

};

int main()

{

derived ob;

ob.setxy(10, 20);

ob.showxy ();

return 0;

}

In this case, the functions setx() and showx() are accessed inside the derived class, which
is perfectly legal because they are private members of that class.

EXERCISES

1. Examine this skeleton:

#include <iostream >

using namespace std;

class mybase

{

int a, b;

public:

int c;

void setab(int i, int j) { a = i; b = j; }

void getab(int &i, int &j) { i = a; j = b; }

};

class derived1 : public mybase

{

// ...

};

class derived2 : private mybase

{

179

TEACH YOURSELF
C++

// ...

};

int main()

{

derived1 o1;

derived2 o2;

int i, j;

// ...

}

Within main(), which of the following statements are legal?

A. o1.getab(i, j);

B. o2.getab(i, j);

C. o1.c = 10;

D. o2.c = 10;

2. What happens when a public member is inherited as public? What happens when it is
inherited as private?

3. If you have not done so, try all the examples presented in this section. On your own, try
various changes relative to the access specifiers and observe the results.

7.2 USING PROTECTED MEMBERS

As you know from the preceding section, a derived class does not have access to the private
members of the base class. This means that if the derived class needs access to some member
of the base, that member must be public. However, there will be times when you want to keep
a member of a base class private but still allow a derived class access to it. To accomplish this
goal, C++ includes the protected access specifier.

The protected access specifier is equivalent to the private specifier with the sole exception
that protected members of a base class are accessible to members of any class derived from that
base. Outside the base or derived classes, protected members are not accessible.

The protected access specifier can occur anywhere in the class declaration, although typically
it occurs after the (default) private members are declared and before the public members. The
full general form of a class declaration is shown here:

class class_name

{

// private members

protected: // optional

// protected members

public:

// public members

};

180

INHERITANCE
7.2. USING PROTECTED MEMBERS

When a protected member of a base class is inherited as public by the derived class, it becomes
a protected member of the derived class. If the base is inherited as private, a protected member
of the base becomes a private member of the derived class.

A base class can also be inherited as protected by a derived class. When this is the case, public
and protected members of the base class become protected members of the derived class. (Of
course, private members of the base class remain private to it and are not accessible by the
derived class.)

The protected access specifier can also be used with structures.

EXAMPLES

1. This program illustrates how public, private, and protected members of a class can be
accessed:

#include <iostream >

using namespace std;

class samp

{

// private by default

int a;

protected: // still private relative to samp

int b;

public:

int c;

samp(int n, int m) { a = n; b = m; }

int geta() { return a; }

int getb() { return b; }

};

int main()

{

samp ob(10, 10);

// ob.b = 99; Error! b is protected and thus private

ob.c = 30; // OK , c is public

cout << ob.geta() << ’ ’;

cout << ob.getb() << ’ ’ << ob.c << ’\n’;

return 0;

}

As you can see, the commented-out line is not permissible in main() because b is protected
and is thus still private to samp.

2. The following program illustrates what occurs when protected members are inherited as
public:

#include <iostream >

using namespace std;

181

TEACH YOURSELF
C++

class base

{

protected: // private to base

int a, b; // but still accessible by derived

public:

void setab(int n, int m) { a = n; b = m; }

};

class derived : public base

{

int c;

public:

void setc(int n) { c = n; }

// this function has access to a and b from base

void showbc ()

{

cout << a << ’ ’ << b << ’ ’ << c << ’\n’;

}

};

int main()

{

derived ob;

/*

a and b are not accessible here because they are

private to both base and derived.

*/

ob.setab(1, 2);

ob.setc (3);

ob.showbc ();

return 0;

}

Because a and b are protected in base and inherited as public by derived, they are
available for use by member functions of derived. However, outside of these two classes,
a and b are effectively private and inaccessible.

3. As mentioned earlier, when a base class is inherited as protected, public and protected
members of the base class become protected members of the derived class. For example,
here the preceding program is changed slightly, inheriting base as protected instead of
public:

// This program will not compile.

#include <iostream >

using namespace std;

class base

{

182

INHERITANCE
7.3. CONSTRUCTORS, DESTRUCTORS, AND INHERITANCE

protected: // private to base

int a, b; // but still accessible by derived

public:

void setab(int n, int m) { a = n; b = m; }

};

class derived : protected base // inherit as protected

{

int c;

public:

void setc(int n) { c = n; }

// this function has access to a and b from base

void showabc ()

{

cout << a << ’ ’ << b << ’ ’ << c << ’\n’;

}

};

int main()

{

derived ob;

// ERROR: setab() is now a protected member of base.

ob.setab(1, 2); // setab() is not accessible here.

ob.setc (3);

ob.showabc ();

return 0;

}

As the comments now describe, because base is inherited as protected, its public and
protected elements become protected members of derived and are therefore inaccessible
within main().

EXERCISES

1. What happens when a protected member is inherited as public? What happens when it
is inherited as private? What happens when it is inherited as protected?

2. Explain why the protected category is needed?

3. In Exercise 1 from Section 7.1, if the a and b inside myclass were made into protected
instead of private (by default) members, would any of your answers to that exercise
change? If so, how?

7.3 CONSTRUCTORS, DESTRUCTORS, AND INHERITANCE

It is possible for the base class, the derived class, or both to have constructor and/or destructor
functions. Several issues that relate to these situations are examined in this section.

183

TEACH YOURSELF
C++

When a base class and a derived class both have constructor and destructor functions, the
constructor functions are executed in order of derivation. The destructor functions are executed
in reverse order. That is, the base class constructor is executed before the constructor in the
derived class. The reverse is true for destructor functions: the derived class’s destructor is
executed before the base class’s destructor.

If you think about it, it makes sense that constructor functions are executed in order of deriva-
tion. Because a base class has no knowledge of any derived class, any initialization it performs
is separate from and possibly prerequisite to any initialization performed by the derived class.
Therefore, it must be executed first.

On the other hand, a derived class’s destructor must be executed before the destructor of the
base class because the base class underlies the derived class. If the base class’s destructor were
executed first, it would imply the destruction of of the derived class. Thus, the derived class’s
destructor must be called before the object goes out of existence.

So far, none of the preceding examples have passed arguments to either a derived or base
class constructor. However, it is possible to do this. When only the derived class takes an
initialization, arguments are passed to the derived class’s constructor in the normal fashion.
However, if you need to pass an argument to the constructor of the base class, a little more
effort is needed. To accomplish this, a chain of argument passing is established. First, all
necessary arguments to both the base class and the derived class are passed to the derived
class’s constructor. Using an expanded form of the derived class’s constructor declaration, you
then pass the appropriate arguments along to the base class. The syntax for passing along an
argument from the derived class to the base class is shown here:

derived_constructor(arg_list): base(arg_list)

{

// body of derived class constructor

}

Here base is the name of the base class. It is permissible for both the derived class and the base
class to use the same argument.It is also possible for the derived class to ignore all arguments
and just pass them along to the base.

EXAMPLES

1. Here is a very short program that illustrates when base class and derived class constructor
and destructor functions are executed:

#include <iostream >

using namespace std;

class base

{

public:

base() { cout << "Constructing base class\n"; }

~base() { cout << "Destructing base class\n"; }

};

class derived : public base

{

public:

derived () { cout << "Constructing derived class\n"; }

~derived () { cout << "Destructing derived class\n"; }

};

184

INHERITANCE
7.3. CONSTRUCTORS, DESTRUCTORS, AND INHERITANCE

int main()

{

derived o;

return 0;

}

This program displays the following output:

Constructing base class

Constructing derived class

Destructing derived class

Destructing base class

As you can see, the constructors are executed in order of derivation and the destructors
are executed in reverse order.

2. This program shows how to pass an argument to a derived class’s constructor:

#include <iostream >

using namespace std;

class base

{

public:

base() { cout << "Constructing base class\n"; }

~base() { cout << "Destructing base class\n"; }

};

class derived : public base

{

int j;

public:

derived(int n)

{

cout << "Constructing derived class\n";

j = n;

}

~derived () { cout << "Destructing derived class\n"; }

void showj() { cout << j << ’\n’; }

};

int main()

{

derived o(10);

o.showj ();

return 0;

}

Notice that the argument is passed to the derived class’s constructor in the normal fashion.

185

TEACH YOURSELF
C++

3. In the following example, both the derived class and the base class constructors take
arguments. In this specific case, both use the same argument, and the derived class
simply passes along the argument to the base.

#include <iostream >

using namespace std;

class base

{

int i;

public:

base(int n)

{

cout << "Constructing base class\n";

i = n;

}

~base() { cout << "Destructing base class\n"; }

void showi() { cout << i << ’\n’; }

};

class derived : public base

{

int j;

public:

derived(int n) : base(n) // pass arg to base class.

{

cout << "Constructing derived class\n";

j = n;

}

~derived () { cout << "Destructing derived class\n"; }

void showj() { cout << j << ’\n’; }

};

int main()

{

derived o(10);

o.showi ();

o.showj ();

return 0;

}

Pay special attention to the declaration of derived’s constructor. Notice how the param-
eter n (which receives the initialization argument) is both used by derived() and passed
to base().

4. In most cases, the constructor functions for the base and derived classes will not use the
same argument. When this is the case and you need to pass one or more arguments
to each, you must pass to the derived class’s constructor all arguments needed by both
the derived class and the base class. Then the derived class simply passes along to the
base those arguments required by it. For example, this program shows how to pass an
argument to the derived class’s constructor and another one to the base class:

186

INHERITANCE
7.3. CONSTRUCTORS, DESTRUCTORS, AND INHERITANCE

#include <iostream >

using namespace std;

class base

{

int i;

public:

base(int n)

{

cout << "Constructing base class\n";

i = n;

}

~base() { cout << "Destructing base class\n"; }

void showi() { cout << i << ’\n’; }

};

class derived : public base

{

int j;

public:

derived(int n, int m) : base(m) // pass arg to base class

.

{

cout << "Constructing derived class\n";

j = n;

}

~derived () { cout << "Destructing derived class\n"; }

void showj() { cout << j << ’\n’; }

};

int main()

{

derived o(10, 20);

o.showi ();

o.showj ();

return 0;

}

5. It is not necessary for the derived class’ constructor to actually use an argument in order
to pass one to the base class. If the derived class does not need an argument, it ignores
the argument and simply passes it along. For example, in this fragment, parameter n is
not used by derived(). Instead, it is simply passed to base():

class base

{

int i;

public:

base(int n)

{

cout << "Constructing base class\n";

187

TEACH YOURSELF
C++

i = n;

}

~base() { cout << "Destructing base class\n"; }

void showi() { cout << i << ’\n’; }

};

class derived : public base

{

int j;

public:

derived(int n) : base(n) // pass arg to base class.

{

cout << "Constructing derived class\n";

j = 0;

}

~derived () { cout << "Destructing derived class\n"; }

void showj() { cout << j << ’\n’; }

};

EXERCISES

1. Given the following skeleton, fill in the constructor function for myderived. Have it pass
along a pointer to an initialization string to mybase. Also, have myderived() initialize
len to the length of the string.

#include <iostream >

#include <cstring >

using namespace std;

class mybase

{

char str [80];

public:

mybase(char *s); { strcpy(str , s); }

char *get() { return str; }

};

class myderived : public mybase

{

int len;

public:

// add myderived () here

int getlen () { return len; }

void show() { cout << get() << ’\n’; }

};

int main()

{

myderived ob("hello");

ob.show();

188

INHERITANCE
7.3. CONSTRUCTORS, DESTRUCTORS, AND INHERITANCE

cout << ob.getlen () << ’\n’;

return 0;

}

2. Using the following skeleton, create appropriate car() and truck() constructor functions.
Have each pass along appropriate arguments to vehicle. In addition, have car() initialize
passengers as specified when object is created. Have truck() initialize loadlimit as
specified when an object is created.

#include <iostream >

using namespace std;

// A base class for various types of vehicle.

class vehicle

{

int num_wheels;

int range;

public:

vehicle(int w, int r)

{

num_wheels = w;

range = r;

}

void showv()

{

cout << "Wheels: " << num_wheels << ’\n’;

cout << "Range: " << range << ’\n’;

}

};

class car : public vehicle

{

int passengers;

public:

// insert car() constructor here

void show()

{

showv ();

cout << "Passengers: " << passengers << ’\n’;

}

};

class truck : public vehicle

{

int loadlimit;

public:

// insert truck() constructor here

void show()

{

showv ();

cout << "Loadlimit: " << loadlimit << ’\n’;

189

TEACH YOURSELF
C++

}

};

int main()

{

car c(5, 4, 500);

truck t(3000 , 12, 1200);

cout << "Car: \n";

c.show();

cout << "\nTruck :\n";

t.show();

return 0;

}

Have car() and truck() declare objects like this:

car ob(passengers , wheels , range);

truck(loadlimit , wheels , range);

7.4 MULTIPLE INHERITANCE

There are two ways that a derived class can inherit more than one base class. First, a derived
class can be used as a base class for another derived class, creating a multilevel class hierarchy.
In this case, the original base class is said to be an indirect base class of the second derived
class. (Keep in mind that any class-no matter how it is created-can be used as a base class.)
Second, a derived class can directly inherit more than one base class. In this situation, two or
more base classes are combined to help create the derived class. There are several issues that
arise when multiple base classes are involved, and these issues are examined in this section.
When a base class is used to derive a class that is used as a base class for another derived
class, the constructor functions of all three classes are called in order of derivation. (This is a
generalization of the principle you learned earlier in this chapter.) Also, destructor functions
are called in reverse order. Thus, if class B! is inherited by D1, and D1 is inherited by D2,
B1 ’s constructor is called first, followed by D1 ’s, followed by D2 ’s. The destructors are called
in reverse order.
When a derived class directly inherits multiple base classes, it uses this expanded declaration:

class derived_class_name : access base1 , access base2 , ...,

access baseN

{

// ... body of class

}

Here base1 through baseN are the base class names and access is the access specifier, which
can be different for each base class.When multiple base classes are inherited, constructors are
executed in the order, left to right, that the base classes are specified. Destructors are executed
in the opposite order.
When a class inherits multiple base classes that have constructors that require arguments, the
derived class passes the necessary arguments to them by using this expanded form of the derived
class’ constructor function:

derived_constructor(arg_list) : base1(arg_list), base2(arg_list),

..., baseN(arg -list)

190

INHERITANCE
7.4. MULTIPLE INHERITANCE

{

// body of derived class constructor

}

Here base1 through baseN are the names of the base classes.
When a derived class inherits a hierarchy of classes, each derived class in the chain must pass
back to its preceding base any arguments it needs.

EXAMPLES

1. Here is an example of a derived class that inherits a class derived from another class.
Notice how arguments are passed along the chain from D2 to B1.

// Multiple Inheritance

#include <iostream >

using namespace std;

class B1

{

int a;

public:

B1(int x) { a = x; }

int geta() { return a; }

};

// Inherit direct base class.

class D1 : public B1

{

int b;

public:

D1(int x, int y) : B1(y) // pass y to B1

{

b = x;

}

int getb() { return b; }

};

// Inherit a derived class and an indirect base.

class D2 : public D1

{

int c;

public:

D2(int x, int y, int z) : D1(y, z) // pass args to D1

{

c = x;

}

/*

Because bases inherited as public , D2 has access

to public elements of both B1 and D1.

*/

void show()

{

191

TEACH YOURSELF
C++

cout << geta() << ’ ’ << getb() << ’ ’;

cout << c << ’\n’;

}

};

int main()

{

D2 ob(1, 2, 3);

ob.show();

// geta() and getb() are still public here

cout << ob.geta() << ’ ’ << ob.getb() << ’\n’;

return 0;

}

The call to ob.show() displays 3 2 1. In this example, B1 is an indirect base class of D2.
Notice that D2 has access to the public members of both D1 and B1. As you should
remember, when public members of a base class are inherited as public, they become
public members of the derived class. Therefore, when D1 inherits B1, geta() becomes a
public member of D1, which becomes a public member of D2.

As the program illustrates, each class in a class hierarchy must pass all arguments required
by each preceding base class. Failure to do so will generate a compile-time error.

The class hierarchy created in this program is illustrated here:

B1

D1

D2

Before we move on, a short discussion about how to draw C++-style inheritance graphs
is in order. In the preceding graph, notice that the arrows point up instead of down. Tra-
ditionally, C++ programmers usually draw inheritance charts as directed graphs in which
the arrow points from the derived class to the base class. While newcomers sometimes find
this approach counter-intuitive, it is nevertheless the way inheritance charts are usually
depicted in C++.

2. Here is a reworked version of the preceding program, in which a derived class directly
inherits two base classes:

#include <iostream >

using namespace std;

// Create first base class.

class B1

{

int a;

public:

192

INHERITANCE
7.4. MULTIPLE INHERITANCE

B1(int x) { a = x; }

int geta() { return a; }

};

// Create second base class.

class B2

{

int b;

public:

B2(int x) { b = x; }

int getb() { return b; }

};

// Directly inherit two base classes.

class D : public B1, public B2

{

int c;

public:

// here z and y are passed directly to B1 and B2

D(int x, int y, int z) : B1(z), B2(y)

{

c = x;

}

/*

Because bases inherited as public , D has access

to public elements of both B1 and B2.

*/

void show()

{

cout << geta() << ’ ’ << getb() << ’ ’;

cout << c << ’\n’;

}

};

int main()

{

D ob(1, 2, 3);

ob.show();

return 0;

}

In this version, the arguments to B1 and B2 are passed individually to these classes by
D. This program creates a class that looks like this:

193

TEACH YOURSELF
C++

B1 B2

D

3. The following program illustrates the order in which constructor and destructor functions
are called when a derived class directly inherits multiple base classes:

#include <iostream >

using namespace std;

class B1

{

public:

B1() { cout << "Constructing B1\n"; }

~B1() { cout << "Destructing B1\n"; }

};

class B2

{

public:

B2() { cout << "Constructing B2\n"; }

~B2() { cout << "Destructing B2\n"; }

};

// Inherit two base classes.

class D : public B1, public B2

{

public:

D() { cout << "Constructing D\n"; }

~D() { cout << "Destructing D\n"; }

};

int main()

{

D ob;

return 0;

}

This program displays the following:

Constructing B1

Constructing B2

Constructing D

Destructing D

Destructing B2

Destructing B1

194

INHERITANCE
7.4. MULTIPLE INHERITANCE

As you have learned, when multiple direct base classes are inherited, constructors are
called in order, left to right, as specified in the inheritance list. Destructors are called in
reverse order.

EXERCISES

1. What does the following program display? (Try to determine this without actually running
the program.)

#include <iostream >

using namespace std;

class A

{

public:

A() { cout << "Constructing A\n"; }

~A() { cout << "Destructing A\n"; }

};

class B

{

public:

B() { cout << "Constructing B\n"; }

~B() { cout << "Destructing B\n"; }

};

class C : public A, public B

{

public:

C() { cout << "Constructing C\n"; }

~C() { cout << "Destructing C\n"; }

};

int main()

{

C ob;

return 0;

}

2. Using the following class hierarchy, create C’s constructor so that it initializes k and
passes on argument to A() and B().

#include <iostream >

using namespace std;

class A

{

int i;

public:

A(int a) { i = a; }

};

195

TEACH YOURSELF
C++

class B

{

int j;

public:

B(int a) { j = a; }

};

class C : public A, public B

{

int k;

public:

/*

Create C() so that it initializes k

and passes arguments to both A() and B()

*/

};

7.5 VIRTUAL BASE CLASSES

A potential problem exists when multiple base classes are directly inherited by a derived class.
To understand what this problem is, consider the following class hierarchy:

Base

Derived1

Base

Derived2

Derived3

Here the base class Base is inherited by both Derived1 and Derived2. Derived3 directly inherits
both Derived1 and Derived2. However, this implies that Base is actually inherited twice by
Derived3 -first it is inherited through Derived1, and then again through Derived2. This causes
ambiguity when a member of Base is used by Derived3. Since two copies of Base are included in
Derived3, is a reference to a member of Base referring to the Base inherited indirectly through
Derived1 or to the Base inherited indirectly through Derived2 ? To resolve this ambiguity. C+
includes a mechanism by which only one copy of Base will be included in Derived3. This feature
is called a virtual base class.

In situations like the one just described, in which a derived class indirectly inherits the same
base class more than once, it is possible to prevent two copies of the base from being present in
the derived object by having that base class inherited as virtual by any derived classes. Doing
this prevents two (or more) copies of the base from being present in any subsequent derived
class that inherits the base class indirectly. The virtual keyword precedes the base class access
specifier when it is inherited by a derived class.

EXAMPLES

1. Here is an example that uses a virtual base class to prevent two copies of base from being
present in derived3.

196

INHERITANCE
7.5. VIRTUAL BASE CLASSES

// This program uses a virtual base class.

#include <iostream >

using namespace std;

class base

{

public:

int i;

};

// Inherit base as virtual.

class derived1 : virtual public base

{

public:

int j;

};

// Inherit base as virtual here , too.

class derived2 : virtual public base

{

public:

int k;

};

/*

Here , derived3 inherits both derived1 and derived2.

However , only one copy of base is present.

*/

class derived3 : public derived1 , public derived2

{

public:

int product () { return i * j * k; }

};

int main()

{

derived3 ob;

ob.i = 10; // unambiguous because only one copy present

ob.j = 3;

ob.k = 5;

cout << "Product is " << ob.product () << ’\n’;

return 0;

}

If derived1 and derived2 had not inherited base as virtual, the statement

ob.i = 10;

would have been ambiguous and a compile-time error would have resulted. (See Exercise
1, below.)

197

TEACH YOURSELF
C++

2. It is important to understand that when a base class is inherited as virtual by a derived
class, that base class still exists within that derived class. For example, assuming the
preceding program, this fragment is perfectly valid:

derived1 ob;

ob.i = 100;

The only difference between a normal base class and a virtual one occurs when an object
inherits the base more than once. If virtual base classes are used, only one base class is
present in the object. Otherwise, multiple copies will be found.

EXERCISES

1. Using the program in Example 1, remove the virtual keyword and try to compile the
program. See what type of errors result.

2. Explain why a virtual base class might be necessary.

SKILLS CHECK

Mastery Skills Check

At this point you should be able to perform the following exercises and answer the questions.

1. Create a generic base class called building that stores the number of floors a building has,
the number of rooms, and its total square footage. Create derived class called house that
inherits building and also stores the number of bedrooms and the number of bathrooms.
Next, create a derived class called office that inherits building and also stores the number
of fire extinguishers and the number of telephones. Note: Your solution may differ from
the answer given in the back of this book. However, if it is functionally the same, count
it as correct.

2. When a base class is inherited as public by the derived class, what happens to its public
members? What happens to its private members? If the base is inherited as private by
the derived class, what happens to its public and private members?

3. Explain what protected means. (Be sure to explain what it means both when referring
to members of a class and when it is used as an inheritance access specifier.)

4. When one class inherits another, when are the classes’ constructors called? When are
their destructors called?

5. Given this skeleton, fill in the details as indicated in the comments:

#include <iostream >

using namespace std;

class planet

{

protected:

double distance; // miles from the sun

int revolve; // in days

public:

planet(double d, int r) { distance = d; revolve = r; }

};

198

INHERITANCE
SKILLS CHECK

class earth : public planet

{

double circumference; // circumference of orbit

public:

/*

Create earth(double d, int r). Have it pass the

distance and days of revolution back to planet.

Have it compute the circumference of the orbit.

(Hint: circumference = 2r*3.1416.)

*/

/*

Create a function called show() that displays the

information.

*/

};

int main()

{

earth ob(93000000 , 365);

ob.show();

return 0;

}

6. Fix the following program:

/*

A variation on the vehicle hierarchy. But

this program contains an error. Fix it. Hind:

try compiling it as is and observe the error

messages.

*/

#include <iostream >

using namespace std;

// A base class for various types of vehicles.

class vehicle

{

int num_wheels;

int range;

public:

vehicle(int w, int r)

{

num_wheels = w;

range = r;

}

void showv()

{

cout << "Wheels: " << num_wheels << ’\n’;

cout << "Range: " << range << ’\n’;

199

TEACH YOURSELF
C++

}

};

enum motor {gas , electric , diesel };

class motorized : public vehicle

{

enum motor mtr;

public:

motorized(enum motor m, int w, int r) : vehicle(w, r)

{

mtr = m;

}

void showm()

{

cout << "Motor: ";

switch(mtr)

{

case gas : cout << "Gas\n";

break;

case electric : cout << "Electric\n";

break;

case diesel : cout << "Diesel\n";

break;

}

}

};

class road_use : public vehicle

{

int passengers;

public:

road_use(int p, int w, int r) : vehicle(w, r)

{

passengers = p;

}

void showr()

{

cout << "Passengers: " << passengers << ’\n’;

}

};

enum steering { power , rack_pinion , manual };

class car : public motorized , public road_use

{

enum steering strng;

public:

car(enum steering s, enum motor m, int w, int r, int p) :

road_use(p, w, r), motorized(m, w, r), vehicle(w, r)

{

200

INHERITANCE
SKILLS CHECK

strng = s;

}

void show()

{

showv ();

showr ();

showm ();

cout << "Steering: ";

switch(strng)

{

case power : cout << "Power\n";

break;

case rack_pinion : cout << "Rack and Pinion\n";

break;

case manual : cout << "Manual\n";

break;

}

}

};

int main()

{

car c(power , gas , 4, 500, 5);

c.show();

return 0;

}

Cumulative Skills Check

This section checks how well you have integrated material in this chapter with that from the
preceding chapters.

1. In Exercise 6 from the preceding Mastery Skills Check section, you might have seen a
warning message (or perhaps an error message) concerning the use of the switch statement
within car and motorized. Why?

2. As you know from the preceding chapter, most operators overloaded in a base class are
available for use in a derived class. Which one or ones are not? Can you offer a reason
why this is the case?

3. Following is a reworked version of the coord class from the previous chapter. This time
it is used as a base for another class called quad, which also maintains the quadrant the
specific point is in. On your own, run this program and try to understand its output.

/*

Overload the +, -, and = relative to coord class. Then

use coord as a base for quad.

*/

#include <iostream >

using namespace std;

201

TEACH YOURSELF
C++

class coord

{

public:

int x, y; // coordinate values

coord () { x=0; y=0; }

coord(int i, int j) { x=i; y=j; }

void get_xy(int &i, int &j) { i=x; j=y; }

coord operator +(coord ob2);

coord operator -(coord ob2);

coord operator =(coord ob2);

};

// Overload + relative to coord class.

coord coord :: operator +(coord ob2)

{

coord temp;

cout << "Using coord operator +()\n";

temp.x = x + ob2.x;

temp.y = y + ob2.y;

return temp;

}

// Overload - relative to coord class.

coord coord ::operator -(coord ob2)

{

coord temp;

cout << "Using coord operator -()\n";

temp.x = x - ob2.x;

temp.y = y - ob2.y;

return temp;

}

// Overload = relative to coord.

coord coord :: operator =(coord ob2)

{

cout << "Using coord operator =()\n";

x = ob2.x;

y = ob2.y;

return *this; // return the object that is assigned to

}

class quad : public coord

{

202

INHERITANCE
SKILLS CHECK

int quadrant;

public:

quad()

{

x = 0;

y = 0;

quadrant = 0;

}

quad(int x, int y) : coord(x, y)

{

if(x>=0 && y >= 0)

quadrant = 1;

else if(x<0 && y>=0)

quadrant = 2;

else if(x<0 && y <0)

quadrant = 3;

else

quadrant = 4;

}

void showq()

{

cout << "Point in Quadrant: " << quadrant << ’\n’;

}

quad operator =(coord ob2);

};

quad quad:: operator =(coord ob2)

{

cout << "Using quad operator =()\n";

x = ob2.x;

y = ob2.y;

if(x>=0 && y >= 0)

quadrant = 1;

else if(x<0 && y>=0)

quadrant = 2;

else if(x<0 && y <0)

quadrant = 3;

else

quadrant = 4;

return *this;

}

int main()

{

quad o1(10, 10), o2(15, 3), o3;

int x, y;

o3 = o1 + o2; // add two objects - this calls operator +()

o3.get_xy(x, y);

203

TEACH YOURSELF
C++

o3.showq();

cout << "(o1+o2) X: " << x << ", Y: " << y << "\n";

o3 = o1 - o2; // subtract two objects

o3.get_xy(x, y);

o3.showq();

cout << "(o1 -o2) X: " << x << ", Y: " << y << "\n";

o3 = o1; // assign an object

o3.get_xy(x, y);

o3.showq();

cout << "(o3=o1) X: " << x << ", Y: " << y << "\n";

return 0;

}

4. Again on your own, convert the program shown in Exercise 3 so that it uses friend operator
functions.

204

8
Introducing the C++ I/O System

Chapter Objectives

8.1 Some C++ I/O basics

8.2 Formatted I/O

8.3 Using width(), precision(),and fill()

8.4 Using I/O manipulators

8.5 Creating your own inserters

8.6 Creating extractors

205

TEACH YOURSELF
C++

Although you have been using C++-style I/O since the first chapter of this book, it is
time to explore it more fully. Like its predecessor, C, the C++ language includes a rich

I/O system that is both flexible and powerful. It is important to understand that C++ still
supports the entire C I/O system. However, C++ supplies a complete set of object-oriented I/O
routines. The major advantage of the C++ I/O system is that it can be overloaded relative to
classes that you create. Put differently, the C++ I/O system allows you to seamlessly integrate
new types that you create.

Like the C I/O system, the C++ object-oriented I/O system makes little distinction between
console and file I/O. File and console I/O are really just different perspectives on the same
mechanism. The examples in this chapter use console I/O, but the information presented is
applicable to file I/O as well. (File I/O is examined in detail in Chapter 9.)

At the time of this writing, there are two versions of the I/O library in use: the older one that
is based on the original specifications for C++ and the newer one defined by Standard C++.
For the most part the two libraries appear the same to the programmer. This is because the
new I/O library is, in essence, simply an updated and improved version of the old one. In
fact, the vast majority of the differences between the two occur beneath the surface, in the way
that the libraries are implemented-not in the way that they are used. From the programmer’s
perspective, the main difference is that the new I/O library contains a few additional features
and defines some new data types. Thus, the new I/O library is essentially a superset of the old
one. Nearly all programs originally written for the old library will compile without substantive
changes when the new library is used. Since the old-style I/O library is now obsolete, this book
describes only the new I/O library as defined by Standard C++. But most of the information
is applicable to the old I/O library as well.

This chapter covers several aspects of C++’s I/O system, including formatted I/O, I/O ma-
nipulators, and creating your own I/O inserters and extractors. As you will see, the C++ I/O
system shares many features with the C I/O system.

Review Skills Check

Before proceeding, you should be able to correctly answer the following questions and do the
exercises.

1. Create a class hierarchy that stores information about airships. Start with a general
base class called airship that stores the number of passengers and the amount of cargo
(in pounds) that can be carried. Then create two derived classes called airplane and
balloon from airship. Have airplane store the type of engine used (propeller or jet)
and range, in miles. Have balloon store information about the type of gas used to lift
the balloon (hydrogen or helium) and its maximum altitude (in feet). Create a short
program that demonstrates this class hierarchy. (Your solution will, no doubt, differ from
the answer shown in the back of this book. If it is functionally similar, count it as correct.)

2. What is protected used for?

3. Given the following class hierarchy, in what order are the constructor functions called? In
what order are the destructor functions called?

#include <iostream >

using namespace std;

class A

{

public:

A() { cout << "Constructing A\n"; }

206

INTRODUCING THE C++ I/O SYSTEM

~A() { cout << "Destructing A\n"; }

};

class B : public A

{

public:

B() { cout << "Constructing B\n"; }

~B() { cout << "Destructing B\n"; }

};

class C : public B

{

public:

C() { cout << "Constructing C\n"; }

~C() { cout << "Destructing C\n"; }

};

int main()

{

C ob;

return 0;

}

4. Given the following fragment, in what order are the constructor functions called?

class myclass : public A, public B, public C

{

// ...

};

5. Fill in the missing constructor functions in this program:

#include <iostream >

using namespace std;

class base

{

int i, j;

public:

// need constructor

void showij () { cout << i << ’ ’ << j << ’\n’; }

};

class derived : public base

{

int k;

public:

// need constructor

void show() { cout << k << ’ ’; showij (); }

};

int main()

207

TEACH YOURSELF
C++

{

derived ob(1, 2, 3);

ob.show();

return 0;

}

6. In general, when you define a class hierarchy, you begin with the most
class and move to the most class. (Fill in the missing words.)

8.1 SOME C++ I/O BASICS

Before we begin out examination of C++ I/O, a few general comments are in order. The C++
I/O system, like the C I/O system, operates through streams. Because of you C programming
experience, you should already know what a stream is, but here is a summary. A stream is a
logical device that either produces or consumes information. A stream is linked to a physical
device by the C++ I/O system. All streams behave in the same manner, even if the actual
physical devices they are linked to differ. Because all streams act the same, the I/O system
presents the programmer with a consistent interface, even though it operates on devices with
differing capabilities. For example, the same function that you use to write to the screen can
be used to write to a disk file or to the printer.

As you know, when a C program begins execution, three predefined streams are automatically
opened: stdin, stdout, and stderr. A similar thing happens when a C++ program starts
running. When a C++ program starts running. When a C++ program begins, these four
streams are automatically opened:

Stream Meaning Default Devices

cin Standard input Keyboard
cout Standard output Screen
cerr Standard error Screen
clog Buffered version of cerr Screen

As you have probably guessed, the streams cin, cout, and cerr correspond to C’s stdin,
stdout, and stderr. You have already been using cin and cout. The stream clog is simply
a buffered version of cerr. Standard C++ also opens wide (16-bit) character versions of these
streams called wcin, wcout, wcerr, and wclog, but we won’t be using them in this book. The
wide character streams exist to support languages, such as Chinese, that require large character
sets.

By default, the standard streams are used to communicate with the console. However, in
environments that support I/O redirection, these streams can be redirected to other devices.

As you learned in Chapter 1, C++ provides support for its I/O system in the header file
<iostream>. In this file, a rather complicated set of class hierarchies is defined that supports
I/O operations. The I/O classes begin with a system of template classes. Template classes,
also called generic classes, will be discussed more fully in Chapter 11; briefly, a template class
defines the form of a class without fully specifying the data upon which it will operate. Once
a template class has been defined, specific instances of it can be created. As it relates to the
I/O library, Standard C++ creates two specific versions of the I/O template classes: one for
8-bit characters and another for wide characters. This book will discuss only the 8-bit character
classes, since they are by far the most frequently used.

208

INTRODUCING THE C++ I/O SYSTEM

8.2. FORMATTED I/O

The C++ I/O system is build upon two related, but different, template class hierarchies. The
first is derived from the low-level I/O class called basic streambuf. This class supplies the
basic, low-level input and output operations and provides the underlying support for the entire
C++ I/O system. Unless you are doing advanced I/O programming, you will not need to
use basic streambuf directly. The class hierarchy that you will most commonly be working
with is derived from basic ios. This is a high-level I/O class that provides formatting, error-
checking, and status information related to stream I/O. basic ios is used as a base for several
derived classes, including basic istream, basic ostream, and basic iostream. These classes
are used to create streams capable of input, output, and input/output, respectively.

As explained earlier, the I/O library creates two specific versions of the class hierarchies just
described: one for 8-bit characters and one for wide characters. The following table shows the
mapping of the template class names to their 8-bit character-based versions (including some
that will be used in Chapter 9):

Template Class 8-Bit Character-Based Class

basic streambuf streambuf
basic ios ios
basic istream istream
basic ostream ostream
basic iostream iostream
basic fstream fstream
basic ifstream ifstream
basic ofstream ofstream

The character-based names will be used throughout the remainder of this book, since they are
the names that you will use in your programs. They are also the same names that were used by
the old I/O library. This is why the old and the new I/O libraries are compatible at the source
code level.

One last point: The ios class contains many member functions and variables that control or
monitor the fundamental operation of a stream. It will be referred to frequently. Just remember
that if you include <iostream> in you program, you will have access to this important class.

8.2 FORMATTED I/O

Until now, all examples in this book displayed information to the screen using C++’s default
formats. However, it is possible to output information in a wide variety of forms. In fact, you
can format data using C++’s I/O system in much the same way that you do using C’s printf()
function. Also, you can alter certain aspects of the way information is input.

Each stream has associated with it a set of format flags that control the way information is
formatted. The ios class declares a bitmask enumeration called fmtflags, in which the values
are defined:

adjustfield floatfield right skipws
basefield hex scientific unitbuf
boolalpha internal showbase uppercase
dec left showpoint
fixed oct showpos

These values are used to set or clear the format flags and are defined within ios. If you are
using an older, nonstandard compiler, it may not define the fmtflags enumeration type. In this
case, the format flags will be encoded into a long integer.

209

TEACH YOURSELF
C++

When the skipws flag is set, leading whitespace characters (spaces, tabs, and newlines) are
discarded when input is being performed on a stream. When skipws is cleared, whitespace
characters are not discarded.
When the left flag is set, output is left justified. When right is set, output is right justified.
When the internal flag is set, a numeric value is padded to fill a field by inserting spaces
between any sign or base character. If none of these flags is set, output is right justified by
default.
By default, numeric values are output in decimal. However, it is possible to change the number
base. Setting the oct flag causes output to be displayed in octal. Setting the hex flag causes
output to be displayed in hexadecimal. To return output to decimal, set the dec flag.
Setting showbase causes the base of numeric values to be shown. For example, if the conversion
base is hexadecimal, the value 1F will be displayed as 0x1F.
By default, when scientific notation is displayed, the e is lowercase. Also, when a hexadecimal
value is displayed, the x is lowercase, When uppercase is set, these characters are displayed
uppercase. Setting showpos causes a leading plus sign to be displayed before positive values.
Setting showpoint causes a decimal point and trailing zeros to be displayed for all floating-point
output-whether needed or not.
If the scientific flag is set, floating-point numeric values are displayed using scientific notation.
When fixed is set, floating-point values are displayed using normal notation. When neither flag
is set, the compiler chooses an appropriate method.
When unitbuf is set, Booleans can be input or output using the keywords true and false.
Since it is common to refer to the oct, dec, and hex fields, they can be collectively referred to
as basefield. Similarly, the left, right,and internal fields can be referred to as adjustfield.
Finally, the scientific and fixed fields can be referenced as floatfield.
To set a format flag, use the setf() function. This function is a member of ios. Its most
common form is shown here:

fmtflags setf(fmtflags flags);

This function returns the previous settings of the format flags and turns on those flags specified
by flags. (All other flags are unaffected.) For example, to turn on the showpos flag, you can
use this statement:

stream.setf(ios:: showpos);

Here stream is the stream that you wish to affect. Notice the use of the scope resolution
operator. Remember, showpos is an enumerated constant within the ios class. Therefore, it
is necessary to tell the compiler this fact by preceding showpos with the class name and the
scope resolution operator. If you don’t the constant showpos will simply not be recognized.
It is important to understand that setf() is a member function of the ios class and affects
streams created by that class. Therefore, any call to setf() is done relative to a specific stream.
There is no concept of calling setf() by itself. Put differently, there is no concept in C++ of
global format status. Each stream maintains its own format status information individually.
It is possible to set more than one flag in a single call to setf() rather than making multiple
calls. To do this, OR together the values of the flags you want to set. For example, this call
sets the showbase and hex flags for cout:

cout.setf(ios:: showbase | ios::hex);

Remember: Because the format flags are defined within the ios class, you must access their
values by using ios and the scope resolution operator. For example, showbase by itself will
not be recognized; you must specify ios::showbase.
The complement of setf() is unsetf().This member function of ios clears one or more format
flags. Its most common prototype form is shown here:

void unsetf(fmtflags flags);

210

INTRODUCING THE C++ I/O SYSTEM

8.2. FORMATTED I/O

The flags specified by flags are cleared. (All other flags are unaffected.)

There will be times when you want to know, but not alter, the current format settings. Since
both setf() and unsetf() alter the setting of one or more flags, ios also includes the member
function flags(), which simply returns the current setting for each format flag. Its prototype is
shown here:

fmtflags flags ();

The flags() function has a second form that allows you to set all format flags associated with a
stream to those specified in the argument to flags(). The prototype for this version of flags()
is shown here:

fmtflags flags(fmtflags f);

When you use this version, the bit pattern found in f is copied to the variable used to hold
the format flags associated with the stream, thus overwriting all previous flag settings. The
function returns the previous settings.

EXAMPLES

1. Here is an example that shows how to set several of the format flags:

#include <iostream >

using namespace std;

int main()

{

// display using default settings

cout << 123.23 << " hello " << 100 << ’\n’;

cout << 10 << ’ ’ << -10 << ’\n’;

cout << 100.0 << "\n\n";

// now , change formats

cout.unsetf(ios::dec); // not required by all compilers

cout.setf(ios::hex | ios:: scientific);

cout << 123.23 << " hello " << 100 << ’\n’;

cout.setf(ios:: showpos);

cout << 10 << ’ ’ << -10 << ’\n’;

cout.setf(ios:: showpoint | ios:: fixed);

cout << 100.0;

return 0;

}

This program displays the following output:

123.23 hello 100

10 -10

100

1.232300e+02 hello 64

a fffffff6

211

TEACH YOURSELF
C++

+100.000000

Notice that the showpos flag affects only decimal output. It does not affect the value
10 when output in hexadecimal. Also notice the unsetf() call that turns off the dec flag
(which is on by default). This call is not needed for all compilers. But for some compilers,
the dec flag overrides the other flags, so it is necessary to turn it off when turning on
either hex or oct. In general, for maximum portability, it is better to set only the number
base that you want to use and clear the others.

2. The following program illustrates the effect of the uppercase flag. It first sets the up-
percase, showbase, and hex flags. It then outputs 99 in hexadecimal. In this case, the
X used in the hexadecimal notation is uppercase. Next, it clears the uppercase flag by
using unsetf() and again outputs 88 in hexadecimal. This time, the x is lowercase.

#include <iostream >

using namespace std;

int main()

{

cout.unsetf(ios::dec);

cout.setf(ios:: uppercase | ios:: showbase | ios::hex);

cout << 88 << ’\n’;

cout.unsetf(ios:: uppercase);

cout << 88 << ’\n’;

return 0;

}

3. The following program uses flags() to display the settings of the format flags relative to
cout. Pay special attention to the showflags() function. You might find it useful in
programs you write.

#include <iostream >

using namespace std;

void showflags ();

int main()

{

// show default condition of format flags

showflags ();

cout.setf(ios::oct | ios:: showbase | ios:: fixed);

showflags ();

return 0;

}

// This function displays the status of the format flags.

void showflags ()

212

INTRODUCING THE C++ I/O SYSTEM

8.2. FORMATTED I/O

{

ios:: fmtflags f;

f = cout.flags (); // get flag settings

if(f & ios:: skipws)

cout << "skipws on\n";

else

cout << "skipws off\n";

if(f & ios::left)

cout << "left on\n";

else

cout << "left off\n";

if(f & ios:: right)

cout << "right on\n";

else

cout << "right off\n";

if(f & ios:: internal)

cout << "internal on\n";

else

cout << "internal off\n";

if(f & ios::dec)

cout << "dec on\n";

else

cout << "dec off\n";

if(f & ios::oct)

cout << "oct on\n";

else

cout << "oct off\n";

if(f & ios::hex)

cout << "hex on\n";

else

cout << "hex off\n";

if(f & ios:: showbase)

cout << "showbase on\n";

else

cout << "showbase off\n";

if(f & ios:: showpoint)

cout << "showpoint on\n";

else

cout << "showpoint off\n";

if(f & ios:: showpos)

213

TEACH YOURSELF
C++

cout << "showpos on\n";

else

cout << "showpos off\n";

if(f & ios:: uppercase)

cout << "uppercase on\n";

else

cout << "uppercase off\n";

if(f & ios:: scientific)

cout << "scientific on\n";

else

cout << "scientific off\n";

if(f & ios:: fixed)

cout << "fixed on\n";

else

cout << "fixed off\n";

if(f & ios:: unitbuf)

cout << "unitbuf on\n";

else

cout << "unitbuf off\n";

if(f & ios:: boolalpha)

cout << "boolalpha on\n";

else

cout << "boolalpha off\n";

cout << "\n";

}

Inside showflags(), the local variable f is declared to be of type fmtflags. If your
compiler does not define fmtflags, declare this variable as long instead. The output from
the program is shown here:

skipws on

left off

right off

internal off

dec on

oct off

hex off

showbase off

showpoint off

showpos off

uppercase off

scientific off

214

INTRODUCING THE C++ I/O SYSTEM

8.2. FORMATTED I/O

fixed off

unitbuf off

boolalpha off

skipws on

left off

right off

internal off

dec on

oct on

hex off

showbase on

showpoint off

showpos off

uppercase off

scientific off

fixed on

unitbuf off

boolalpha off

4. The next program illustrates the second version of flags(). It first constructs a flag mask
that turns on showpos, showbase, oct, and right. It then uses flags() to set the flag
variable associated with cout to these settings. The function showflags() verifies that
the flags are set as indicated. (This is the same function used in the previous program.)

#include <iostream >

using namespace std;

void showflags ();

int main()

{

// show default condition of format flags

showflags ();

// showpos , showbase , oct , right are on , others off

ios:: fmtflags f = ios:: showpos | ios:: showbase | ios::oct

| ios::right;

cout.flags(f); // set flags

showflags ();

return 0;

}

215

TEACH YOURSELF
C++

EXERCISES

1. Write a program that sets cout’s flags so that integers display a + sign when positive
values are displayed. Demonstrate that you have set the format flags correctly.

2. Write a program that sets cout’s flags so that the decimal point is always shown when
floating-point values are displayed. Also, display all floating-point values in scientific
notation with an uppercase E.

3. Write a program that saves the current state of the format flags, sets showbase and hex,
and displays the value 100. Then reset the flags to their previous values.

8.3 USING width(), precision(), AND fill()

In addition to the formatting flags, there are three member functions defined by ios that set these
format parameters: the field width, the precision, and the fill character. These are width(),
precision() and fill(), respectively.
By default, when a value is output, it occupies only as much space as the number of characters
it takes to displays it. However, you can specify a minimum field width by using the width()
function. Its prototype is shown here:

streamsize width(streamsize w);

Here w becomes the field width, and the previous field width is returned. The streamsize
type is defined by <iostream> as some form of integer. In some implementations, each time
an output operation is performed, the filed width returns to its default setting, so it might be
necessary to set the minimum field width before each output statement.
After you set a minimum field width, when a value uses less than the specified width, the field is
padded with the current fill character (the space, by default) so that the field width is reached.
However, keep in mind that if the size of the output value exceeds the minimum field width,
the field will be overrun. No values are truncated.
By default, six digits of precision are used. You can set this number by using the precision()
function. Its prototype is shown here:

streamsize precision(streamsize p);

Here the precision is set to p and the old value is returned.
By default, when a field needs to be filled, it is filled with spaces. You can specify the fill
character by using the fill() function. Its prototype is shown here:

char fill(char ch);

After a call to fill(), ch becomes the new fill character, and the old one is returned.

EXAMPLES

1. Here is a program that illustrates the format functions:

#include <iostream >

using namespace std;

int main()

{

cout.width (10); // set minimum filed width

cout << "hello" << ’\n’; // right -justify by default

cout.fill(’%’); // set fill character

216

INTRODUCING THE C++ I/O SYSTEM

8.3. USING width(), precision(), AND fill()

cout.width (10); // set width

cout << "hello" << ’\n’; // right -justify default

cout.setf(ios::left); // left -justify

cout.width (10); // set width

cout << "hello" << ’\n’; // output left justified

cout.width (10); // set width

cout.precision (10); // set 10 digits of precision

cout << 123.234567 << ’\n’;

cout.width (10); // set width

cout.precision (6); // set 6 digits of precision

cout << 123.234567 << ’\n’;

return 0;

}

This program displays the following output:

hello

%%%%%hello

hello%%%%%

123.234567

123.235%%%

Notice that the field width is set before each output statement.

2. The following program shows how to use the C++ I/O format functions to create an
aligned table of numbers:

// Create a table of square roots and squares.

#include <iostream >

#include <cmath >

using namespace std;

int main()

{

double x;

cout.precision (4);

cout << " x sqrt(x) x^2\n\n";

for(x = 2.0; x <= 20.0; x++)

{

cout.width (7);

cout << x << " ";

cout.width (7);

cout << sqrt(x) << " ";

cout.width (7);

cout << x*x << ’\n’;

}

return 0;

}

217

TEACH YOURSELF
C++

This program creates the following table:

x sqrt(x) x^2

2 1.414 4

3 1.732 9

4 2 16

5 2.236 25

6 2.449 36

7 2.646 49

8 2.828 64

9 3 81

10 3.162 100

11 3.317 121

12 3.464 144

13 3.606 169

14 3.742 196

15 3.873 225

16 4 256

17 4.123 289

18 4.243 324

19 4.359 361

20 4.472 400

EXERCISES

1. Create a program that prints the natural log and base 10 log of the numbers from 2 to
100. Format the table so that the numbers are right justified within a field width of 10,
using a precision of five decimal places.

2. Create a function called center() that has this prototype:

void center(char *s);

Have this function center the specified string on the screen. To accomplish this, use the
width() function. Assume that the screen is 80 characters wide. (For simplicity, you may
assume that no string exceeds 80 characters.) Write a program that demonstrates that
your function works.

3. On your own, experiment with the format flags and the format functions. Once you
become familiar with the C++ I/O system, you will have no trouble using it to format
output any way you like.

218

INTRODUCING THE C++ I/O SYSTEM

8.4. USING I/O MANIPULATORS

8.4 USING I/O MANIPULATORS

There is a second way that you can format information using C++’s I/O system. This method
uses special functions called I/O manipulators. As you will see, I/O manipulators are, in some
situations, easier to use than the ios format flags and functions.

I/O manipulators are special I/O format functions that can occur within an I/O statement,
instead of separate from it the way the ios member functions must. The standard manipulators
are shown in Table 8-1. As you can see, many of the I/O manipulators parallel member functions
of the ios class. Many of the manipulators shown in Table 8-1 were added recently to Standard
C++ and will be supported only by modern compilers.

Manipulator Purpose Input/Output

boolalpha Turns on boolalpha flag Input/Output
dec Turns on dec flag Input/Output
endl Outputs a newline character and flushes the stream Output
ends Outputs a null Output
fixed Turns on fixed flag Output
flush Flushes a stream Output
hex Turns on hex flag Input/Output
internal Turns on internal flag Output
left Turns on left Output
noboolalpha Turns off boolalpha flag Input/Output
noshowbase Turns off showbase flag Output
noshowpoint Turns of showpoint flag Output
noshowpos Turns off showpos flag Output
noskipws Turns off skipws flag Input
nounitbuf Turns off unitbuf flag Output
nouppercase Turns off uppercase flag Output
oct Turns on oct flag Input/Output
resetiosflags(fmtflags f) Turns off the flags specified in f Input/Output
right Turns on right flag Output
scientific Turns on scientific flag Output
setbase(int base) Sets the number base to base Input/Output
setfill(int ch) Sets the fill character to ch Output
setiosflags(fmtflags f) Turns on the flags specified in f Input/Output
setprecision(int p) Sets the number of digits of precision Output
setw(int w) Sets the field width to w Output
showbase Turns on showbase flag Output
showpoint Turns on showpoint flag Output
showpos Turns on showpos flag Output
skipws Turns on skipws flag Input
unitbuf Turns on unitbuf flag Output
uppercase Turns on uppercase flag Output
ws Skips leading white space Input

Table 8.1: The Standard C++ I/O Manipulators

To access manipulators that take parameters, such as setw(), you must include <iomanip>
in you program. This is not necessary when you are using a manipulator that does not require
an argument.

As stated above, the manipulators can occur in the chain of I/O operations. For example:

219

TEACH YOURSELF
C++

cout << oct << 100 << hex << 100;

cout << setw (10) << 100;

The first statement tells cout to display integers in octal and then outputs 100 in octal. It
then tells the stream to display integers in hexadecimal and then outputs 100 in hexadecimal
format. The second statement sets the field width to 10 and then displays 100 in hexadecimal
format again. Notice that when a manipulator does not take an argument, such as oct in the
example, it is not followed by parentheses. This is because it is the address of the manipulator
that is passed to the overloaded << operator.
Keep in mind that an I/O manipulator affects only the stream of which the I/O expression is
a part. I/O manipulators do not affect all streams currently opened for use.
As the preceding example suggests, the main advantages of using manipulation over the ios
member functions is that they are often easier to use and allow more compact code to be
written.
If you wish to set specific format flags manually by using a manipulator, use setiosflags().
This manipulator performs the same function as the member function setf(). To turn off flags
use the resetiosflags() manipulator. This manipulator is equivalent to unsetf().

EXAMPLES

1. This program demonstrates several of the I/O manipulators:

#include <iostream >

#include <iomanip >

using namespace std;

int main()

{

cout << hex << 100 << endl;

cout << oct << 10 << endl;

cout << setfill(’X’) << setw (10);

cout << 100 << " hi " << endl;

return 0;

}

This program displays the following:

64

12

XXXXXXX144 hi

2. Here is another version of the program that displays a table of the squares and square
roots of the numbers 2 through 20. This version uses I/O manipulators instead of member
functions and format flags.

/*

This version uses I/O manipulators to display

the table of squares and square roots.

*/

#include <iostream >

#include <iomanip >

#include <cmath >

220

INTRODUCING THE C++ I/O SYSTEM

8.4. USING I/O MANIPULATORS

using namespace std;

int main()

{

double x;

cout << setprecision (4);

cout << " x sqrt(x) x^2\n\n";

for(x = 2.0; x <= 20.0; x++)

{

cout << setw (7) << x << " ";

cout << setw (7) << sqrt(x) << " ";

cout << setw (7) << x*x << ’\n’;

}

}

3. One of the most interesting format flags added by the new I/O library is boolalpha.
This flag can be set either directly or by using the new manipulators boolalpha or
noboolalpha. What makes boolalpha so interesting is that setting it allows you to
input and output Boolean values using the keywords true and false. Normally you must
enter 1 for true and 0 for false. For example, consider the following program:

// Demonstrate boolalpha format flag.

#include <iostream >

using namespace std;

int main()

{

bool b;

cout << "Before setting boolalpha flag: ";

b = true;

cout << b << " ";

b = false;

cout << b << endl;

cout << "After setting boolalpha flag: ";

b = true;

cout << boolalpha << b << " ";

b = false;

cout << b << endl;

cout << "Enter a Boolean value: ";

cin >> boolalpha >> b; // you can enter true or false

cout << "You entered " << b;

return 0;

}

Here is a sample run:

Before setting boolalpha flag: 1 0

221

TEACH YOURSELF
C++

After setting boolalpha flag: true false

Enter a Boolean value: true

You entered true

As you can see, once the boolalpha flag has been set, Boolean values are input and
output using the words true or false. Notice that you must set the boolalpha flags for
cin and cout separately. As with all format flags, setting boolalpha for one stream does
not imply that it is also set for another.

EXERCISES

1. Redo Exercises 1 and 2 from Section 8.3, this time using I/O manipulators instead of
member functions and format flags.

2. Show the I/O statement that outputs the value 100 in hexadecimal with the base indicator
(the 0x) shown. Use the setiosflags() manipulator to accomplish this.

3. Explain the effect of setting the boolalpha flag.

8.5 CREATING YOUR OWN INSERTERS

As stated earlier, one of the advantages of the C++ I/O system is that you can overload the I/O
operators for classes that you create. By doing so, you can seamlessly incorporate your classes
into your C++ programs. In this section you learn how to overload C++’s output operator
<<.

In the language of C++, the output operation is called an insertion and the << is called
the insertion operator. When you overload the << for output, you are creating an inserter
function, or inserter for short. The rationale for these terms comes from the fact that an output
operator inserts information into a stream.

All inserted functions have this general form:

ostream &operator <<(ostream &stream , class_name obj)

{

// body of inserter

return stream;

}

The first parameter is a reference to an object of type ostream. This means that stream
must be an output stream. (Remember, ostream is derived form the ios class.) The second
parameter receives the object that will be output. (This can also be a reference parameter, if
that is more suitable to your application.) Notice that the inserted function returns a reference
to stream, which is of type ostream. This is required if the overloaded << is going to be used
in a series of I/O expressions, such as

cout << ob1 << ob2 << ob3;

Within an inserter you can perform any type of procedure. What an inserted does is completely
up to you. However, for the inserter to be consistent with good programming practices, you
should limit its operations to outputting information to a stream.

Although you might find this surprising at first, an inserter cannot be a member of of the class
on which it is designed to operate. Here is why: When an operator function of any type is a
member of a class, the left operand, which is passed implicitly through the this pointer, is the
object that generates the call to the operator function. This implies that the left operand is an

222

INTRODUCING THE C++ I/O SYSTEM

8.5. CREATING YOUR OWN INSERTERS

object of that class. Therefore, if an overloaded operator function is a member of a class the
left operand must be an object of that class. However, when you create an inserter, the left
operand is a stream and the right operand is the object that you want to output. Therefore,
an inserter cannot be a member function.

The fact that an inserter cannot be a member function might appear to be a serious flaw in
C++ because it seems to imply that all data of a class that will be output using an inserter
will need to be public, thus violating the key principle of encapsulation. However, this is not
the case. Even though inserters cannot be members of the class upon which they are designed
to operate, they can be friends of the class. In fact, in most programming situations you will
encounter, an overloaded inserter will be a friend of the class for which it was created.

EXAMPLES

1. As a simple first example, this program contains an inserter for the coord class, developed
in a previous chapter:

// Use a friend inserter for objects of type coord.

#include <iostream >

using namespace std;

class coord

{

int x, y;

public:

coord () { x = 0; y = 0; }

coord(int i, int j) { x = i; y = j; }

friend ostream &operator <<(ostream &stream , coord ob);

};

ostream &operator <<(ostream &stream , coord ob)

{

stream << ob.x << ", " << ob.y << ’\n’;

return stream;

}

int main()

{

coord a(1, 1), b(10, 23);

cout << a << b;

return 0;

}

This program displays the following:

1, 1

10, 23

The inserter in this program illustrates one very important point about creating your own
inserters: make them as general as possible. In this case, the I/O statement inside the
inserter outputs the values of x and y to stream, which is whatever stream is passed to
the function. As you will see in the following chapter, when written correctly the same

223

TEACH YOURSELF
C++

inserter that outputs to the screen can be used to output to any stream. Sometimes
beginners are tempted to write the coord inserter like this:

ostream &operator <<(ostream &stream , coord ob)

{

cout << ob.x << ", " << ob.y << ’\n’;

return stream;

}

In this case, the output statement is hard-coded to display information on the standard
output device linked to cout. However, this prevents the inserter from being used by
other streams. The point is that you should make your inserters as general as possible
because there is no disadvantage to doing so.

2. For the sake of illustration, here is the preceding program revised so that the inserter is
not a friend of the coord class. Because the inserter does not have access to the private
parts of coord, the variables x and y have to be made public.

/*

Create an inserter for objects of type coord , using

a non -friend inserter

*/

#include <iostream >

using namespace std;

class coord

{

public:

int x, y; // must be public

coord () { x = 0; y = 0; }

coord(int i, int j) { x = i; y = j; }

};

// An inserter for the coord class.

ostream &operator <<(ostream &stream , coord ob)

{

stream << ob.x << ", " << ob.y << ’\n’;

return stream;

}

int main()

{

coord a(1, 1), b(10, 23);

cout << a << b;

return 0;

}

3. An inserter is not limited to displaying only textual information. An inserter can per-
form any operation or conversion necessary to output information in a form needed by a
particular device or situation. For example, it is perfectly valid to create an inserter that
sends information to a plotter. In this case, the inserted will need to send appropriate

224

INTRODUCING THE C++ I/O SYSTEM

8.5. CREATING YOUR OWN INSERTERS

plotter codes in addition to the information. To allow you to taste the flavor of this type of
inserter, the following program creates a class called triangle, which stores the width and
height of a right triangle. The inserter for this class displays the triangle on the screen.

// This program draws right triangles

#include <iostream >

using namespace std;

class triangle

{

int height , base;

public:

triangle(int h, int b) { height = h; base = b; }

friend ostream &operator <<(ostream &stream , triangle ob);

};

// Draw a triangle

ostream &operator <<(ostream &stream , triangle ob)

{

int i, j, h, k;

i = j = ob.base -1;

for(h=ob.height -1; h; h--)

{

for(k=i; k; k--)

stream << ’ ’;

stream << ’*’;

if(j!=i)

{

for(k=j-i-1; k; k--)

stream << ’ ’;

stream << ’*’;

}

i--;

stream << ’\n’;

}

for(k=0; k<ob.base; k++)

stream << ’*’;

stream << ’\n’;

return stream;

}

int main()

{

triangle t1(5, 5), t2(10, 10), t3(12, 12);

cout << t1;

cout << endl << t2 << endl << t3;

225

TEACH YOURSELF
C++

return 0;

}

Notice that this program illustrates how a properly designed inserter can be fully inte-
grated into a ”normal” I/O expression. This program displays the following:

*
**

* *
* *

a

*
**

* *
* *

* *
* *

* *
* *

* *

a

*
**

* *
* *

* *
* *

* *
* *

* *
* *

* *

EXERCISES

1. Given the following strtype class and partial program, create an inserter that displays a
string:

#include <iostream >

#include <cstring >

#include <cstdlib >

using namespace std;

class strtype

{

char *p;

int len;

public:

strtype(char *ptr);

~strtype () { delete [] p; }

friend ostream &operator <<(ostream &stream , strtype &ob);

};

strtype :: strtype(char *ptr)

{

226

INTRODUCING THE C++ I/O SYSTEM

8.5. CREATING YOUR OWN INSERTERS

len = strlen(ptr)+1;

p = new char (len);

if(!p)

{

cout << "Allocation error\n";

exit (1);

}

strcpy(p, ptr);

}

// Create operator << inserter function here.

int main()

{

strtype s1("This is a test."), s2("I like C++.");

cout << s1 << ’\n’ << s2;

return 0;

}

2. Replace the show() function in the following program with an inserter function:

#include <iostream >

using namespace std;

class planet

{

protected:

double distance; // miles from the sun

int revolve; // in days

public:

planet(double d, int r)

{

distance = d;

revolve = r;

}

};

class earth : public planet

{

double circumference; // circumference of orbit

public:

earth(double d, int r) : planet(d, r)

{

circumference = 2* distance *3.1416;

}

/*

Rewrite this so that it displays the information using

an inserter function.

*/

void show()

227

TEACH YOURSELF
C++

{

cout << "Distance from sum: " << distance << ’\n’;

cout << "Days in orbit: " << revolve << ’\n’;

cout << "Circumference of orbit: " << circumference

<< ’\n’;

}

};

int main()

{

earth ob(93000000 , 365);

cout << ob;

return 0;

}

3. Explain why an inserter cannot be a member function.

8.6 CREATING EXTRACTORS

Just as you can overload the << output operator, you can overload the >> input operator.
In C++, the >> is referred to as the extractor. The reason for this term is that the act of
inputting information from a stream removes (that is, extracts) data from it.
The general form of an extractor function is shown here:

istream &operator >>(istream &stream , class_name &ob)

{

// body of extractor

return stream;

}

Extractors return a reference to istream, which is an input stream. The first parameter must
be a reference to an input stream. The second parameter is a reference to the object that is
receiving input.
For the same reason that an inserter cannot be a member function, an extractor cannot be a
member function. Although, you can perform any operation within an extractor, it is best to
limit its activity to inputting information.

EXAMPLES

1. This program adds an extractor to the coord class:

// Use a friend extractor for objects of type coord.

#include <iostream >

using namespace std;

class coord

{

int x, y;

public:

coord () { x = 0; y = 0; }

coord(int i, int j) { x = i; y = j; }

228

INTRODUCING THE C++ I/O SYSTEM

8.6. CREATING EXTRACTORS

friend ostream &operator <<(ostream &stream , coord ob);

friend istream &operator >>(istream &stream , coord &ob);

};

ostream &operator <<(ostream &stream , coord ob)

{

stream << ob.x << ", " << ob.y << ’\n’;

return stream;

}

istream &operator >>(istream &stream , coord &ob)

{

cout << "Enter coordinates: ";

stream >> ob.x >> ob.y;

return stream;

}

int main()

{

coord a(1, 1), b(10, 23);

cout << a << b;

cin >> a;

cout << a;

return 0;

}

Notice how the extractor also prompts the user for input. Although such prompting is
not required (or even desired) for most situations, this function shows how a customized
extractor can simplify coding when a prompting message is needed.

2. Here an inventory class is created that stores the name of an item, the number on hand,
and its cost. The program includes both an inserter and an extractor for this class.

#include <iostream >

#include <cstring >

using namespace std;

class inventory

{

char item [40]; // name of item

int onhand; // number on hand

double cost; // cost of item

public:

inventory(char *i, int o, double c)

{

strcpy(item , i);

onhand = o;

cost = c;

}

229

TEACH YOURSELF
C++

friend ostream &operator <<(ostream &stream , inventory ob)

;

friend istream &operator >>(istream &stream , inventory &ob

);

};

ostream &operator <<(ostream &stream , inventory ob)

{

stream << ob.item << ": " << ob.onhand;

stream << " on hand at $" << ob.cost << ’\n’;

}

istream &operator >>(istream &stream , inventory &ob)

{

cout << "Enter item name: ";

stream >> ob.item;

cout << "Enter number on hand: ";

stream >> ob.onhand;

cout << "Enter cost: ";

stream >> ob.cost;

return stream;

}

int main()

{

inventory ob("hammer", 4, 12.55);

cout << ob;

cin >> ob;

cout << ob;

return 0;

}

EXERCISES

1. Add an extractor to the strtype class from Exercise 1 in the preceding section.

2. Create a class that stores an integer value and its lowest factor. Create both an inserter
and an extractor for this class.

SKILLS CHECK

Mastery Skills Check

At this point you should be able to perform the following exercises and answer the questions.

1. Write a program that displays the number 100 in decimal, hexadecimal, and octal. (Use
the ios format flags.)

230

INTRODUCING THE C++ I/O SYSTEM

SKILLS CHECK

2. Write a program that displays the value 1000.5364 in a 20-character field, left justified,
with two decimal places, using * as a fill character. (Use the ios format flags.)

3. Rewrite your answer to Exercises 1 and 2 so that they use I/O manipulators.

4. Show how to save the format flags for cout and how to restore them. Use either member
functions or manipulators.

5. Create an inserter and an extractor for this class:

class pwr

{

int base;

int exponent;

double result; // base to the exponent power

public:

pwr(int b, int e);

};

pwr::pwr(int b, int e)

{

base = b;

exponent = e;

result = 1;

for(; e; e--)

result = result * base;

}

6. Create a class called box that stores the dimensions of a square. Create an inserter that
displays a square box on the screen. (Use any method you like to display the box.)

Cumulative Skills Check

This section checks how well you have integrated material in this chapter with that from the
preceding chapters.

1. Using the stack class shown here, create an inserter that displays the contents of the
stack. Demonstrate that your inserter works.

#include <iostream >

using namespace std;

#define SIZE 10

// Declare a stack class for characters

class stack

{

char stck[SIZE]; // holds the stack

int tos; // index of top -of -stack

public:

stack ();

void push(char ch); // push character on stack

char pop(); // pop character from stack

231

TEACH YOURSELF
C++

};

// Initialize the stack

stack ::stack ()

{

tos = 0;

}

// Push a character

void stack::push(char ch)

{

if(tos==SIZE)

{

cout << "Stack is full\n";

return 0;

}

stck[tos] = ch;

tos ++;

}

// Pop a character.

char stack::pop()

{

if(tos ==0)

{

cout << "Stack is empty\n";

return 0; // return null on empty stack

}

tos --;

return stck[tos];

}

2. Write a program that contains a class called watch. Using the standard time functions,
have this class’s constructor read the system time and store it. Create an inserter that
displays the time.

3. Using the following class, which converts feet to inches, create an extractor that prompts
the user for feet. Also, create an inserter that displays the number of feet and inches.
Include a program that demonstrates that your inserter and extractor work.

class ft_to_inches

{

double feet;

double inches;

public:

void set(double f)

{

feet = f;

inches = f * 12;

}

};

232

9
Advanced C++ I/O

Chapter Objectives

9.1 Creating your own manipulators

9.2 File I/O basics

9.3 Unformatted, binary I/O

9.4 More unformatted I/O functions

9.5 Random access

9.6 Checking the I/O status

9.7 Customized I/O and files

233

TEACH YOURSELF
C++

This chapter continues the examination of the C++ I/O system. In it you will learn to
create your own I/O manipulators and work with files. Keep in mind that the C++ I?O

system is both rich and flexible and contains many features While it is beyond the scope of this
book to include all of those features, the most important ones are discussed here. A complete
description of the C++ I/O system can be found in my book C++: The complete Reference
(Berkeley: Osborne/McGraw-Hill).

Note: The C++ I/O system described in this chapter reflects the one defined by Standard
C++ and is compatible with all major C++ compilers. If you have an older or conforming
compiler, its I/O system will not have all the capabilities described here.

Review Skills Check

Before proceeding, you should be able to correctly answer the following questions and do the
exercises.

1. Write a program that displays the sentence ”C++ is fun” in a 40-character-wide filed
using a colon (:) as the fill character.

2. Write a program that displays the outcome of 10/3 to three decimal places. Use ios
member functions to do this.

3. Redo the preceding program using I/O manipulators.

4. What is an inserter? What is an extractor?

5. Given the following class, create an inserter and an extractor for it.

class date

{

char d[9]; // store date as string: mm/dd/yy

public:

// add inserter and extractor

};

6. What header must be included if your program is to use I/O manipulators that take
parameters?

7. What predefined streams are created when a C++ program begins execution?

9.1 CREATING YOUR OWN MANIPULATORS

In addition to overloading the insertion and extraction operators, you can further customize
C++’s I/O system by creating your own manipulator functions. Custom manipulators are
important for two main reasons. First, a manipulator can consolidate a sequence of several
separate I/O operations. For example, it is not uncommon to have situations in which the same
sequence of I/O operations occurs frequently within a program. In these cases you can use a
custom manipulator to perform these actions, thus simplifying your source code and preventing
accidental errors. Second, a custom manipulator can be important when you need to perform
I/O operations no a nonstandard device. For example, you could use a manipulator to send
control codes to a special type of printer or an optic recognition system.

Custom manipulators are a feature of C++ that supports OOP, but they can also benefit
programs that aren’t object oriented. As you will see, custom manipulators can help make any
I/O-intensive program clearer and more efficient.

234

ADVANCED C++ I/O

9.1. CREATING YOUR OWN MANIPULATORS

As you know, there are two basic types of manipulators: those that operate on input streams
and those that operate on output streams. In addition to these two broad categories, there is a
secondary division: those manipulators that take an argument and those that don’t. There are
some significant differences between the way a parameterless manipulator and a parameterized
manipulator are created. Further, creating parameterized manipulators is substantially more
difficult then creating parameterless ones and is beyond the scope of this book. However, writing
your own parameterless manipulators is quite easy and is examined here.

All parameterless manipulator output functions have this skeleton:

ostream &manip_name(ostream &stream)

{

// your code here

return stream;

}

Here manip-name is the name of the manipulator and stream is a reference to the invoking
stream. A reference to the stream is returned. This is necessary if a manipulator is used as part
of a larger I/O expression. It is important to understand that even though the manipulator has
as its single argument a reference to the stream upon which it is operating, no argument is used
when the manipulator is called in an output operation.

All parameterless input manipulator functions have this skeleton:

istream &manip_name(istream & stream)

{

// your code here

return stream;

}

An input manipulator receives a reference to the stream on which it was invoked. This stream
must be returned by the manipulator.

Remember: It is crucial that your manipulators return a reference to the invoking stream. If
this is not done, your manipulators cannot be used in sequence of input or output operations.

EXAMPLES

1. As a simple first example, the following program creates a manipulator called setup()
that sets the filed width to 10, the precision to 4, and the fill character to *.

#include <iostream >

using namespace std;

ostream &setup(ostream &stream)

{

stream.width (10);

stream.precision (4);

stream.fill(’*’);

return stream;

}

int main()

{

cout << setup << 123.123456;

235

TEACH YOURSELF
C++

return 0;

}

2. Custom manipulators need not be complex to be useful. For example, the simple ma-
nipulators atn() and note() show here, provide a shorter way to output frequently used
words or phrases.

#include <iostream >

using namespace std;

// Attention:

ostream &atn(ostream &stream)

{

stream << "Attention: ";

return stream;

}

// Please note:

ostream ¬e(ostream &stream)

{

stream << "Please Note: ";

return stream;

}

int main()

{

cout << atn << "High voltage circuit\n";

cout << note << "Turn off all lights\n";

return 0;

}

Even though they are simple, if used frequently, these manipulators save you from some
tedious typing.

3. This program creates the getpass() input manipulator, which rings the bell and then
prompts for a password:

#include <iostream >

#include <cstring >

using namespace std;

// A simple input manipulator

istream &getpass(istream &stream)

{

cout << ’\a’; // sound bell

cout << "Enter password: ";

return stream;

}

int main()

{

char pw [80];

236

ADVANCED C++ I/O

9.2. FILE I/O BASICS

do

{

cin >> getpass >> pw;

}

while(strcmp(pw, "password"));

cout << "Logon complete\n";

return 0;

}

EXERCISES

1. Create an output manipulator that displays the current system time and date. Call this
manipulator td().

2. Create an output manipulator called sethex() that sets output to hexadecimal and turns
on the uppercase and showbase flags. Also, create an output manipulator called reset()
that undoes the changes made by sethex().

3. Create an input manipulator called skipchar() that reads and ignores the next ten char-
acters from the input stream.

9.2 FILE I/O BASICS

It is now time to turn our attention to file I/O. As mentioned in the preceding chapter, file I/O
and console I/O are closely related. In fact, the same class hierarchy that supports console I/O
also supports file I/O. Thus, most of what you have already learned about I/O applies to files
as well. Of course, file handling makes use of several new features.
To perform file I/O, you must include the header <fstream> in your program. It defines
several classes, including ifstream, ofstream, and fstream also have access to all operations
defined by ios (discussed in the preceding chapter).
In C++, a file is opened by linking it to a stream. There are three types of streams: input,
output, and input/output. Before you can open a file, you must first obtain a stream. To create
an input stream, declare an object of type ifstream. To create an output stream, declare an
object of type ofstream. Streams that will be performing both input and output operations
must be declared as objects of type type fstream. For example, this fragment creates one input
stream, one output stream, and one stream capable of both input and output:

ifstream in; // input

ofstream out; // output

fstream io; // input and output

Once you have created a stream, one way to associate it with a file is by using the function
open(). This function is a member of each of the three file stream classes. The prototype for
each is shown here:

void ifstream ::open(const char *filename ,

openmode mode=ios::in);

void ofstream ::open(const char *filename ,

openmode mode=ios::out | ios::trunc);

237

TEACH YOURSELF
C++

void fstream ::open(const char *filename ,

openmode mode=ios::in | ios::out);

Here filename is the name of the file, which can include a path specifier. The value of mode de-
termines how the file is opened. It must be a value of type openmode, which is an enumeration
defined by ios that contains the following values:

ios::app

ios::ate

ios:: binary

ios::in

ios::out

ios:: trunc

You can combine two or more of these values by ORing them together. Let’s see what each of
these values means.

Including ios::app causes all output to that file to be appended to the end. This value can be
used only with files capable of output. Including ios::ate causes a seek to the end of the file
to occur when the file is opened. Although ios::ate causes a seek to end-of-file, I/O operations
can still occur anywhere within the file.

The ios::in value specifies that the file is capable of input. The ios::out value specifies that
the file is capable of output.

The ios::binary value causes a file to be opened in binary mode. By default, all files are opened
in text mode. In text mode, various character translations might take place, such as carriage
return/linefeed sequences being converted into newlines. However, when a file is opened in
binary mode, no such character translations will occur. Keep in mind that any file, whether it
contains formatted text or raw data, can be opened in either binary or text mode. The only
difference is whether character translations take place.

The ios::trunc value causes the contents of a preexisting file by the same name to be destroyed
and the file to be truncated to zero length. When you create an output stream using ofstream,
any preexisting file with the same name is automatically truncated.

The following fragment opens an output file called test:

ofstream mystream;

mystream.open("test");

Since the mode parameter to open() defaults to a value appropriate to the type of stream being
opened, there is no need to specify its value in the preceding example.

If open() fails, the stream will evaluate to false when used in a Boolean expression. You can
make use of this fact to confirm that the open operation succeeded by using a statement like
this:

if(! mystream)

{

cout << "Cannot open file.\n";

// handle error

}

In general, you should always check the result of a call to open() before attempting to access
the file.

You can also check to see if you have successfully opened a file by using the is open() function,
which is a member of fstream, ifstream, and ofstream. It has this prototype.

bool is_open ();

238

ADVANCED C++ I/O

9.2. FILE I/O BASICS

It returns true if the stream is linked to an open file and false otherwise. For example, the
following checks if mystream is currently open:

if(! mystream.is_open ())

{

cout << "File is not open.\n";

// ..

Although it is entirely proper to open a file by using the open() function, most of the time
you will not do so because the ifstream, ofstream, and fstream classes have constructor
functions that automatically open the file. The constructor functions have the same parameters
and defaults as the open() function. Therefore, the most common way you will see a file opened
is shown in this example:

ifstream mystream("myfile"): // open file for input

As stated, if for some reason the file cannot be opened, the stream variable will evaluate as
false when used in a conditional statement. Therefore, whether you use a constructor function
to open the file or an explicit call to open(), you will want to confirm that the file has actually
been opened by testing the value of the stream.
To close a file, use the member function close(). For example, to close the file linked to a
stream called mystream, use this statement:

mystream.close ();

The close() function takes no parameters and returns no value.
You can detect when the end of an input file has been reach by using the eof() member function
of ios. It has this prototype:

bool eof();

It returns true when the end of file has been encountered and false otherwise.
Once a file has been opened, it is very easy to read textual data from it or write formatted,
textual data to it. Simply use the << and >> operators the same way you do when performing
console I/O, except that instead of using cin and cout, substitute a stream that is liked to a file.
In a way, reading and writing files by using >> and << is like using C’s fprintf() and fscanf()
functions. All information is stored in the file in the same format it would be in if displayed
on the screen. Therefore, a file produced by using << is a formatted text file. Typically, files
that contain formatted text that you operate on using the >> and << operators should be
opened for text rather than binary mode. Binary mode is best used on unformatted files, which
are described later in this chapter.

EXAMPLES

1. Here is a program that creates an output file, write information to it, closes the file and
opens it again as an input file, and reads in the information:

#include <iostream >

#include <fstream >

using namespace std;

int main()

{

ofstream fout("test"); // create output file

if(!fout)

{

239

TEACH YOURSELF
C++

cout << "Cannot open output file.\n";

return 1;

}

fout << "Hello!\n";

fout << 100 << ’ ’ << hex << 100 << endl;

fout.close();

ifstream fin("test"); // open input file

if(!fin)

{

cout << "Cannot open input file.\n";

return 1;

}

char str [80];

int i;

fin >> str >> i;

cout << str << ’ ’ << i << endl;

fin.close();

return 0;

}

After you run this program, examine the contents of test. It will contain the following:

Hello!

100 64

As stated earlier, when the << and >> operators are used to perform file I/O, informa-
tion is formatted exactly as it would appear on the screen.

2. Following is another example of disk I/O. This program reads strings entered at the
keyboard and writes them to disk. The program stops when the user enters a $ as the
first character in a string. To use the program, specify the name of the output file on the
command line.

#include <iostream >

#include <fstream >

using namespace std;

int main(int argc , char *argv [])

{

if(argc !=2)

{

cout << "Usage: WRITE <filename >\n";

return 1;

}

ofstream out(argv [1]); // output file

240

ADVANCED C++ I/O

9.2. FILE I/O BASICS

if(!out)

{

cout << "Cannot open output file.\n";

return 1;

}

char str [80];

cout << "Write strings to disk , ’$’ to stop\n";

do

{

cout << ": ";

cin >> str;

out << str << endl;

}

while (*str != ’$’);

out.close();

return 0;

}

3. Following is a program that copies a text file and, in the process, converts all spaces into
| symbols. Notice how eof() is used to check for the end of input file. Notice also how the
input stream fin has its skipws flag turned off. This prevents leading spaces from being
skipped.

// Convert spaces to |s.

#include <iostream >

#include <fstream >

using namespace std;

int main(int argc , char *argv [])

{

if(argc !=3)

{

cout << "Usage: CONVERT <input > <output >\n";

return 1;

}

ifstream fin(argv [1]); // open input file

ofstream fout(argv [2]); // create output file

if(!fout)

{

cout << "Cannot open output file.\n";

return 1;

}

if(!fin)

{

cout << "Cannot open input file.\n";

return 1;

241

TEACH YOURSELF
C++

}

char ch;

fin.unsetf(ios:: skipws); // do not skip spaces

while (!fin.eof())

{

fin >> ch;

if(ch==’ ’)

ch = ’|’;

if(!fin.eof())

fout << ch;

}

fin.close();

fout.close();

return 0;

}

4. There are a few differences between C++’s original I/O library and the modern Standard
C++ library that you should be aware of, especially if you are converting older code.
First, in the original I/O library, open() allowed a third parameter, which specified the
file’s protection mode. This parameter defaulted to a normal file. The modern I/O library
does not support this parameter.

Second, when you are using the old library to open a stream for input and output using
fstream, you must explicitly specify both the ios::in and the ios::out mode values. No
default value for mode is supplied. This applies to both the fstream constructor and to
its open() function. For example, using the old I/O library you must use a call to open()
as shown here to open a file for input and output:

fstream mystream;

mystream.open("test", ios::in | ios::out);

In the modern I/O library, an object of type fstream automatically opens files for input
and output when the mode parameter is not supplied.

Finally, in the old I/O system, the mode parameter could also include either ios::nocreate(),
which causes the open() function to fail if the file does not already exist, or ios::noreplace,
which causes the open() function to fail if the file does not already exist. These values
are not supported by Standard C++.

EXERCISES

1. Write a program that will copy a text file. Have this program count the number of
characters copied and display this result. Why does the number displayed differ from that
shown when you list the output file in the directory?

2. Write a program that writes the following table of information to a file called phone:

Isaac Newton, 415 555-3423

Robert Goddard, 213 555-2312

Enrico Fermi, 202 555-1111

242

ADVANCED C++ I/O

9.3. UNFORMATTED, BINARY I/O

3. Write a program that counts the number of words in a file. For simplicity, assume that
anything surrounded by whitespace is a word.

4. What does is open() do?

9.3 UNFORMATTED, BINARY I/O

Although formatted text files such as those produced by the preceding examples are useful in a
variety of situations, they do not have the same binary representation of the data as that used
internally by your program rather than the human-readable text that data is translated into by
the << and >> operators. Thus, unformatted functions give you detailed control over how
files are written and read.

The lowest-level unformatted I/O functions are get() and put(). You can read a byte by using
get() and write a byte by using put(). These functions are members of all input and output
stream classes, respectively. The get() function has many forms, but the most commonly used
version is shown here, along with put():

istream &get(char &ch);

ostream &put(char &ch);

The get() function reads a single character from the associated stream and puts that value in
ch. It returns a reference to the stream. If a read is attempted at end-of-file, on return the
invoking stream will evaluate to false when used in an expression. The put() function writes
ch to the stream and returns a reference to the stream.

To read and write blocks of data, use the read() and write() functions, which are also members
of the input and output stream classes, respectively. Their prototypes are shown here:

istream &read(char *buf , streamsize num);

ostream &write(const char *buf , streamsize num);

The read() function reads num bytes from the invoking stream and puts them in the buffer
pointed to by buf. The write() function writes num bytes to the associated stream from the
buffer pointed to by buf. The streamsize type is some form of integer. An object of type
streamsize is capable of holding the largest number of bytes that will be transferred in any
one I/O operation.

If the end of the file is reached before num characters have been read, read() simply stops, and
the buffer contains as many characters as were available. You can find out how many characters
have been read by using the member function gcount(), which has this prototype:

streamsize gcount ();

It returns the number of characters read by the last unformatted input operations.

When you are using the unformatted file functions, most often you will open a file for binary
rather than text operations. The reason for this is easy to understand: specifying ios::binary
prevents any character translations from occurring. This is important when the binary repre-
sentations of data such as integers, float, and pointers are stored in the file. However, it is
perfectly acceptable to use the unformatted functions on a file opened in text mode-as long as
that file actually contains only text. But remember, some character translations may occur.

EXAMPLES

1. The next program will display the contents of any file on the screen. It uses the get()
function.

243

TEACH YOURSELF
C++

#include <iostream >

#include <fstream >

using namespace std;

int main(int argc , char *argv [])

{

char ch;

if(argc !=2)

{

cout << "Usage: PR <filename >\n";

return 1;

}

ifstream in(argv[1], ios::in | ios:: binary);

if(!in)

{

cout << "Cannot open file.\n";

return 1;

}

while (!in.eof())

{

in.get(ch);

cout << ch;

}

in.close();

return 0;

}

2. This program uses put() to write characters to a file until the user enters a dollar sign:

#include <iostream >

#include <fstream >

using namespace std;

int main(int argc , char *argv [])

{

char ch;

if(argc !=2)

{

cout << "Usage: WRITE <filename >\n";

return 1;

}

ofstream out(argv[1], ios::out | ios:: binary);

if(!out)

{

cout << "Cannot open file.\n";

244

ADVANCED C++ I/O

9.3. UNFORMATTED, BINARY I/O

return 1;

}

cout << "Enter a $ to stop\n";

do

{

cout << ": ";

cin.get(ch);

out.put(ch);

}

while(ch!=’$’);

out.close();

return 0;

}

Notice that the program uses get() to read characters from cin. This prevents leading
spaces from being discarded.

3. Here is a program that uses write() to write a double and a string to a file called test:

#include <iostream >

#include <fstream >

#include <cstring >

using namespace std;

int main()

{

ofstream out("test", ios::out | ios:: binary);

if(!out)

{

cout << "Cannot open output file.\n";

return 1;

}

double num = 100.45;

char str[] = "This is a test";

out.write((char *) &num , sizeof(double)) ;

out.write(str , strlen(str));

out.close();

return 0;

}

Note: The type cast to (char *) inside the call to write() is necessary when outputting
a buffer that is not defined as a character array. Because of C++’s strong type checking,
a pointer of one type will not automatically be converted into a pointer of another type.

4. This program uses read() to read the file created by the program in Example 3:

245

TEACH YOURSELF
C++

#include <iostream >

#include <fstream >

using namespace std;

int main()

{

ifstream in("test", ios::in | ios:: binary);

if(!in)

{

cout << "Cannot open input file.\n";

return 1;

}

double num;

char str [80];

in.read((char *) &num , sizeof(double)) ;

in.read(str , 14);

str [14] = ’\0’; // null terminate str

cout << num << ’ ’ << str;

in.close();

return 0;

}

As is the case with the program in the preceding example, the type cast inside read() is
necessary because C++ will not automatically convert a pointer of one type to another.

5. The following program first writes an array of double values to a file and then reads them
back. It also reports the number of characters read.

// Demonstrate gcount ()

#include <iostream >

#include <fstream >

using namespace std;

int main()

{

ofstream out("test", ios::out | ios:: binary);

if(!out)

{

cout << "Cannot open output file.\n";

return 1;

}

double nums [4] = {1.1, 2.2, 3.3, 4.4};

out.write((char *) nums , sizeof(nums));

out.close();

246

ADVANCED C++ I/O

9.4. MORE UNFORMATTED I/O FUNCTIONS

ifstream in("test", ios::in | ios:: binary);

if(!in)

{

cout << "Cannot open input file.\n";

return 1;

}

in.read((char *) &nums , sizeof(nums)) ;

int i;

for(i=0; i<4; i++)

cout << nums[i] << ’ ’;

cout << ’\n’;

cout << in.gcount () << " characters read\n";

in.close();

return 0;

}

EXERCISES

1. Rewrite your answers to Exercises 1 and 3 in the preceding section (Section 9.2) so that
they use get(), put(), read(), and/or write(). (Use whichever of these functions you
deem most appropriate.)

2. Given the following class, write a program that outputs the contents of the class to a file.
Create an inserter function for this purpose.

class account

{

int custnum;

char name [80];

double balance;

public:

account(int c, char *n, double b)

{

custom = c;

strcpy(name , n);

balance = b;

}

// create inserter here

};

9.4 MORE UNFORMATTED I/O FUNCTIONS

In addition to the form shown earlier, there are several different ways in which the get() function
is overloaded. The prototypes for the three most commonly used overloaded forms are shown
here:

247

TEACH YOURSELF
C++

istream &get(char *buf , streamsize num);

istream &get(char *buf , streamsize num , char delim);

int get();

The first form reads characters into the array pointed to by buf until either num-1 characters
have been read, a newline is found, or the end of the file has been encountered. They array
pointed to by buf will be null terminated by get(). If the newline character is encountered in
the input stream, it is not extracted. Instead, it remains in the stream until the next input
operation.
The second form reads characters into the array pointed to by buf until either num-1 characters
have been read, the character specified by delim has been found, or the end of the file has been
encountered. The array pointed to by buf will be null terminated by get(). If the delimiter
character is encountered in the input stream, it is not extracted. Instead, it remains in the
stream until the next input operation.
The third overloaded form of get() returns the next character from the stream. It returns EOF
if the end of the file is encountered. This form of get() is similar to C’s getc() function.
Another function that performs input is getline(). It is a member of each input stream class.
Its prototype are shown here:

istream &getline(char *buf , streamsize num);

istream &getline(char *buf , streamsize num , char delim);

The first form reads characters into the array pointed to by buf until either num-1 characters
have been read, a newline character has been found, or the end of the file has been encountered.
The array pointed to by buf will be null terminated by getline(). If the newline character is
encountered in the input stream, it is extracted, but it is not put into buf.
The second form reads characters into the array pointed to by buf until either num-1 characters
have been read, the character specified by delim has been found, or the end of the file has been
encountered. The array pointed to by buf will be null terminated by getline(). If the delimiter
character is encountered in the input stream, it is extracted, but it is not put into buf.
As you can see, the two versions of getline() are virtually identical to the get(buf, num) and
get(buf, num, delim) versions of get(). Both read characters from input and put them into
the array pointed to by buf until either num-1 characters have been read or until the delimiter
character or the end of the file is encountered. The difference between get() and getline() is
that getline() reads and removes the delimiter from the input stream; get() does not.
You can obtain the next character in the input stream without removing it from that stream by
using peek(). This function is a member of the input stream classes and has this prototype:

int peek();

It returns the next character in the stream; it returns EOF if the end of the file is encountered.
You can return the last character read from a stream to that stream by using putback(), which
is a member of the input stream classes. Its prototype is shown here:

istream &putback(char c);

where c is the last character read.
When output is performed, data is not immediately written to the physical device linked to the
stream. Instead, information is stored in an internal buffer until the buffer is full. Only then
are the contents of that buffer written to disk. However, you can force the information to be
physically written to disk before the buffer is full by calling flush(). flush() is a member of
the output stream classes and has this prototype:

ostream &flush();

Calls to flush() might be warranted when a program is going to be used in adverse environments
(in situations where power outages occur frequently, for example).

248

ADVANCED C++ I/O

9.4. MORE UNFORMATTED I/O FUNCTIONS

EXAMPLES

1. As you know, when you use >> to read a string, it stops reading when the first whitespace
character is encountered. This makes it useless for reading a string containing spaces.
However, you can overcome this problem by using getline(), as this program illustrates:

// Use getline () to read a string that contains spaces.

#include <iostream >

#include <fstream >

using namespace std;

int main()

{

char str [80];

cout << "Enter your name: ";

cin.getline(str , 79);

cout << str << ’\n’;

return 0;

}

In this program, the delimited used by getline() is the newline. This makes getline()
act much like the standard gets() function.

2. In real programming situations, the functions peek() and putback() are especially useful
because they let you more easily handle situations in which you do not know what type
of information is being input at any point in time. The following program gives the flavor
of this. It reads either strings or integers from a file. The strings and integers can occur
in any order.

// Demonstrate peek()

#include <iostream >

#include <fstream >

#include <cctype >

#include <cstdlib >

using namespace std;

int main()

{

char ch;

ofstream out("test", ios::out | ios:: binary);

if(!out)

{

cout << "Cannot open output file.\n";

return 1;

}

char str[80], *p;

out << 123 << "this is a test" << 23;

out << "Hello there!" << 99 << "sdf" << endl;

249

TEACH YOURSELF
C++

out.close();

ifstream in("test", ios::in | ios:: binary);

if(!in)

{

cout << "Cannot open input file.\n";

return 1;

}

do

{

p = str;

ch = in.peek(); // see what type of char is next

if(isdigit(ch))

{

while(isdigit (*p=in.get())) // read integer

p++;

in.putback (*p); // return char to stream

*p = ’\0’; // null -terminate the string

cout << "Integer: " << atoi(str);

}

else if(isalpha(ch))

{

while(isalpha (*p=in.get())) // read a string

p++;

in.putback (*p);

*p = ’\0’;

cout << "String: " << str;

}

else

in.get(); // ignore

cout << ’\n’;

}

while (!in.eof());

in.close();

return 0;

}

EXERCISES

1. Rewrite the program in Example 1 so it uses get() instead of getline(). Does the program
function differently?

2. Write a program that reads a text file one line at a time and displays each line on the
screen. Use getline().

3. On your own, think about why there may be cases in which a call to flush() is appropriate.

250

ADVANCED C++ I/O

9.5. RANDOM ACCESS

9.5 RANDOM ACCESS

In C++’s I/O system, you perform random access by using the seekg() and seekp() functions
which are members of the input and output stream classes, respectively. Their most common
forms are shown here:

istream &seekg(off_type offset , seekdir origin);

ostream &seekp(off_type offset , seekdir origin);

Here off tyoe is an integer type defined by ios that is capable of containing the largest valid
value that offset can have. seekdir is an enumeration defined by ios that has these values:

Value Meaning

ios::beg Seek from beginning
ios::cur Seek from current location
ios::end Seek from end

The C++ I/O system manages two pointers associated with a file. One is the get pointer, which
specifies where in the file the next input operation will occur. The other is the put pointer, which
specifies where in the file the next output operation will occur. Each time an input or output
operation takes place, the appropriate pointer is automatically sequentially advanced. However,
by using the seekg() and seekp() functions, it is possible to access the file in a non-sequential
fashion.
The seekg() function moves the associated file’s current get pointer offset number of bytes
from the specified origin. The seekp() function moves the associated file’s current put pointer
offset number of bytes from the specified origin.
In general, files that will be accessed via seekg() and seekp()) should be opened for binary file
operations. This prevents character translations from occurring which may affect the apparent
position of an item within a file.
You can determine the current position of each file pointer by using these member functions:

pos_type tellg ();

pos_type tellp ();

Here pos type is an integer type defined by ios that is capable of holding the largest value
that defines a file position.
There are overloaded versions of seekg() and seekp() that move the file pointers to the location
specified by the return values of tellg() and tellp(). Their prototypes are shown here:

istream &seekg(pos_type position);

ostream &seekp(pos_type position);

EXAMPLES

1. The following program demonstrates the seekp() function. It allows you to change a
specific character in a file. Specify a file name on the command line, followed by the
number of the byte in the file you want to change, followed by the new character. Notice
that the file is opened for read/write operations.

#include <iostream >

#include <fstream >

#include <cstdlib >

using namespace std;

int main(int argc , char *argv [])

251

TEACH YOURSELF
C++

{

if(argc !=4)

{

cout << "Usage: CHANGE <filename > <byte > <char >\n";

return 1;

}

fstream out(argv[1], ios::in | ios::out | ios:: binary);

if(!out)

{

cout << "Cannot open file.\n";

return 1;

}

out.seekp(atoi(argv [2]), ios::beg);

out.put(*argv [3]);

out.close();

return 0;

}

2. The next program uses seekg() to position the get pointer into the middle of a file and
then displays the contents of that file from that point. The name of the file and the
location to begin reading from are specified on the command line.

// Demonstrate seekg()

#include <iostream >

#include <fstream >

#include <cstdlib >

using namespace std;

int main(int argc , char *argv [])

{

char ch;

if(argc !=3)

{

cout << "Usage: LOCATE <filename > <loc >\n";

return 1;

}

ifstream in(argv[1], ios::in | ios:: binary);

if(!in)

{

cout << "Cannot open input file.\n";

return 1;

}

in.seekg(atoi(argv [2]), ios::beg);

252

ADVANCED C++ I/O

9.6. CHECKING THE I/O STATUS

while (!in.eof())

{

in.get(ch);

cout << ch;

}

in.close();

return 0;

}

EXERCISES

1. Write a program that displays a text file backwards. Hint: Think about this before
creating your program. The solution is easier than you might imagine.

2. Write a program that swaps each character pair in a text file. For example, if the file
contains ”1234”, then after the program is run, the file will contain ”2143”. (For simplicity,
you may assume that the file contains an even number of characters.)

9.6 CHECKING THE I/O STATUS

The C++ I/O system maintains status information about the outcome of each I/O operation.
The current status of an I/O stream is described in an object of type iostate, which is an
enumeration defined by ios that includes these members:

Name Meaning

goodbit No errors occurred.
eofbit End-of-file has been encountered.
failbit A nonfatal I/O error has occurred.
badbit A fatal I/O error has occurred.

For older compilers, the I/O status flags are held in an int rather than an object of type iostate.
There are two ways in which you can obtain I/O status information. First, you can call the
rdstate() function, which is a member of ios. It has this prototype:

iostate rdstate ();

It returns the current status of the error flags. As you can probably guess from looking at the
preceding list of flags, rdstate() returns goodbit when no error has occurred. Otherwise, an
error flag is returned.
The other way you can determine whether an error has occurred is by using one or more of
these ios member functions:

bool bad();

bool eof();

bool fail();

bool good();

The eof() function was discussed earlier. The bad() function returns true if badbit is set.
The fail() function returns true if failbit is set. The good() function returns true if there are
no errors. Otherwise they return false.
Once an error has occurred, it might need to be cleared before your program continues. To do
this, use the ios member function clear() whose prototype is shown here:

253

TEACH YOURSELF
C++

void clear(iostate flags=ios:: goodbit);

If flags is goodbit (as it is by default). all error flags are cleared. Otherwise, set flags to the
settings you desire.

EXAMPLES

1. The following program illustrates rdstate(). It displays the contents of a text file. If an
error occurs, the function reports it by using checkstatus().

#include <iostream >

#include <fstream >

using namespace std;

void checkstatus(ifstream &in);

int main(int argc , char *argv [])

{

if(argc !=2)

{

cout << "Usage: DISPLAY <filename >\n";

return 1;

}

ifstream in(argv [1]);

if(!in)

{

cout << "Cannot open input file.\n";

return 1;

}

char c;

while(in.get(c))

{

cout << c;

checkstatus(in);

}

checkstatus(in); // check final status

in.close();

return 0;

}

void checkstatus(ifstream &in)

{

ios:: iostate i;

i = in.rdstate ();

if(i & ios:: eofbit)

cout << "EOF encountered\n";

254

ADVANCED C++ I/O

9.6. CHECKING THE I/O STATUS

else if(i & ios:: failbit)

cout << "Non -Fatal I/O error\n";

else if(i & ios:: badbit)

cout << "Fatal I/O error\n";

}

The preceding program will always report at least one ”error.” After the while loop ends,
the final call to checkstatus() reports, as expected, that an EOF has been encountered.

2. This program displays a text file. It uses good() to detect a file error:

#include <iostream >

#include <fstream >

using namespace std;

int main(int argc , char *argv [])

{

char ch;

if(argc !=2)

{

cout << "Usage: PR <filename >\n";

return 1;

}

ifstream in(argv [1]);

if(!in)

{

cout << "Cannot open input file.\n";

return 1;

}

while (!in.eof())

{

in.get(ch);

// check for error

if(!in.good() && !in.eof())

{

cout << "I/O Error ... terminating\n";

return 1;

}

cout << ch;

}

in.close();

return 0;

}

EXERCISES

1. Add error checking to your answers to the exercise from the preceding section.

255

TEACH YOURSELF
C++

9.7 CUSTOMIZED I/O AND FILES

In the preceding chapter, you learned how to overload the insertion and extraction operators
relative to your own classes. In that chapter, only console I/O was performed. However, because
all C++ streams are the same, the same overloaded inserter function, for example, can be used
to output to the screen or to a file with no changes whatsoever. This is one of the most important
and useful features of C++’s approach to I/O.

As stated in the previous chapter, overloaded inserters and extractors, as well as I/O manip-
ulators, can be used with any stream as long as they are written in a general manner. If you
”hard-code” a specific stream into an I/O function, its use is, of course, limited to only that
stream. This is why you were urged to generalize your I/O functions whenever possible.

EXAMPLES

1. In the following program, the coord class overloads the << and >> operators. Notice
that you can use the operator functions to write both to the screen and to a file.

#include <iostream >

#include <fstream >

using namespace std;

class coord

{

int x, y;

public:

coord(int i, int j) { x = i; y = j; }

friend ostream &operator <<(ostream &stream , coord ob);

friend istream &operator >>(istream &stream , coord &ob);

};

ostream &operator <<(ostream &stream , coord ob)

{

stream << ob.x << ’ ’ << ob.y << ’\n’;

return stream;

}

istream &operator >>(istream &stream , coord &ob)

{

stream >> ob.x >> ob.y;

return stream;

}

int main()

{

coord o1(1, 2), o2(3, 4);

ofstream out("test");

if(!out)

{

cout << "Cannot open output file.\n";

256

ADVANCED C++ I/O

9.7. CUSTOMIZED I/O AND FILES

return 1;

}

out << o1 << o2;

out.close();

ifstream in("test");

if(!in)

{

cout << "Cannot open input file.\n";

return 1;

}

coord o3(0, 0), o4(0, 0);

in >> o3 >> o4;

cout << o3 << o4;

in.close();

return 0;

}

2. All of the I/O manipulators can be used with files. For example, in this reworked version
of a program presented earlier in this chapter, the same manipulator that writes to the
screen will also write to a file:

#include <iostream >

#include <fstream >

#include <iomanip >

using namespace std;

// Attention:

ostream &atn(ostream &stream)

{

stream << "Attention: ";

return stream;

}

// Please note:

ostream ¬e(ostream &stream)

{

stream << "Please Note: ";

return stream;

}

int main()

{

ofstream out("test");

257

TEACH YOURSELF
C++

if(!out)

{

cout << "Cannot open output file.\n";

return 1;

}

// write to screen

cout << atn << "High voltage circuit\n";

cout << note << "Turn off all lights\n";

// write to file

out << atn << "High voltage circuit\n";

out << note << "Turn off all lights\n";

out.close();

return 0;

}

EXERCISE

1. On your own, experiment with the programs from the preceding chapter, trying each on
a disk file.

SKILLS CHECK

Mastery Skills Check

At this point you should be able to perform the following exercises and answer the questions.

1. Create an output manipulator that outputs three tabs and then sets the field width to 20.
Demonstrate that your manipulator works.

2. Create an input manipulator that reads and discards all non-alphabetical characters.
When the first alphabetical character is read, have the manipulator return it to the input
stream and return. Call this manipulator findalpha.

3. Write a program that copies a text file. In the process, reverse the case of all letters.

4. Write a program that reads a text file and then reports the number of times each letter
in the alphabet occurs in the file.

5. If you have not done so, add complete error checking to your solutions to Exercises 3 and
4 above.

6. What function positions the get pointer? What function positions the put pointer?

258

ADVANCED C++ I/O

SKILLS CHECK

Cumulative Skills Check

This section checks how well you have integrated material in this chapter with that from the
preceding chapters.

1. Following is a reworked version of the inventory class presented in the preceding chapter.
Write a program that fills in the functions store() and retrieve(). Next, create a small
inventory file on disk containing a few entries. Then, using random I/O, allow the user
to display the information about any item by specifying its record number.

#include <iostream >

#include <fstream >

#include <cstring >

using namespace std;

#define SIZE 40

class inventory

{

char item[SIZE]; // name of item

int onhand; // number on hand

double cost; // cost of item

public:

inventory(char *i, int o, double c)

{

strcpy(item , i);

onhand = o;

cost = c;

}

void store(fstream &stream);

void retrieve(fstream &stream);

friend ostream &operator <<(ostream &stream , inventory ob)

;

friend istream &operator >>(istream &stream , inventory &ob

);

};

ostream &operator <<(ostream &stream , inventory ob)

{

stream << ob.item << ": " << ob.onhand;

stream << " on hand at $" << ob.cost << ’\n’;

return stream;

}

istream &operator >>(istream &stream , inventory &ob)

{

cout << "Enter item name: ";

stream >> ob.item;

cout << "Enter number on hand: ";

stream >> ob.onhand;

cout << "Enter cost: ";

stream >> ob.cost;

259

TEACH YOURSELF
C++

return stream;

}

2. As a special challenge, on your own, create a stack class for characters that stores them
in a disk file rather than in an array in memory.

260

10
Virtual Functions

Chapter Objectives

10.1 Pointers to derived classes

10.2 Introduction to virtual functions

10.3 More about virtual functions

10.4 Applying polymorphism

261

TEACH YOURSELF
C++

This chapter examines another important aspect of C++: the virtual function. What makes
virtual functions important is that they are used to support run-time polymorphism. Poly-

morphism is supported by C++ in two ways. First, it is supported at compile time, through
the use of overloaded operators and functions. Second, it is supported at run time, through
the use of virtual functions. As you will learn, run-time polymorphism provides the greatest
flexibility.

At the foundation of virtual functions and run-time polymorphism are pointers to derived
classes. For this reason this chapter begins with a discussion of such pointers.

Review Skills Check

Before proceeding, you should be able to correctly answer the following questions and do the
exercises.

1. Create a manipulator that causes numbers to be displayed in scientific notation, using a
capital E.

2. Write a program that copies a text file. During the copy process, convert all tabs into the
correct number of spaces.

3. Write a program that searches a text file for a word specified on the command line. Have
the program display how many times the specified word is found. For simplicity, assume
that anything surrounded by whitespace is a word.

4. Show the statement that sets the put pointer to the 234th byte in a file linked to a stream
called out.

5. What functions report status information about the C++ I/O system?

6. Give one advantage of using the C++ I/O functions instead of the C-like I/O system.

10.1 POINTERS TO DERIVED CLASSES

Although Chapter 4 discussed C++ pointers at some length, one special aspect was deferred
until now because it relates specifically to virtual functions. The feature is this: A pointer
declared as a pointer to a base class can also be used to point to any class derived from that
base. For example, assume two classes called base and derived, where derived inherits base.
Given this situation, the following statements are correct:

base *p; // base class pointer

base base_ob; // object of type base

derived derived_ob; // object of type derived

// p can , of course , point to base objects

p = &base_ob; // p points to base object

// p can also point to derived objects without error

p = &derived_ob; // p points to derived object

As the comments suggest, a base pointer can point to an object of any class derived from that
base without generating a type mismatch error.

Although you can use a base pointer to point to a derived object, you can access only those
members of the derived object that were inherited from the base. This is because the base

262

VIRTUAL FUNCTIONS
10.1. POINTERS TO DERIVED CLASSES

pointer has knowledge only of the base class. It knows nothing about the members added by
the derived class.

While it is permissible for a base pointer to point to a derived object, the reverse is not true.
A pointer of the derived type cannot be used to access an object of the base class. (A type cast
can be used to overcome this restriction, but its use is not recommended practice.)

One final point: Remember that pointer arithmetic is relative to the data type the pointer is
declared as pointing to. Thus, if you point a base pointer to a derived object and then increment
that pointer, it will not be pointing to the next derived object. It will be pointing to (what it
thinks is) the next base object. Be careful about this.

EXAMPLE

1. Here is a short program that illustrates how a base class pointer can be used to access a
derived class:

// Demonstrate pointer to derived class.

#include <iostream >

using namespace std;

class base

{

int x;

public:

void setx(int i) { x = i; }

int getx() { return x; }

};

class derived : public base

{

int y;

public:

void sety(int i) { y = i; }

int gety() { return y; }

};

int main()

{

base *p; // pointer to base type

base b_ob; // object of base

derived d_ob; // object of derived

// use p to access base object

p = &b_ob;

p->setx (10); // access base object

cout << "Base object x: " << p->getx() << ’\n’;

// use p to access derived object

p = &d_ob; // point to derived object

p->setx (99); // access derived object

// can’t use p to set y, so do it directly

d_ob.sety (88);

263

TEACH YOURSELF
C++

cout << "Derived object x: " << p->getx() << ’\n’;

cout << "Derived object y: " << d_ob.gety() << ’\n’;

return 0;

}

Aside from illustrating pointers to derived classes, there is no value in using a base class
pointer in the way shown in this example. However, in the next section you will see why
base class pointers to derived objects are so important.

EXERCISE

1. On your own, try the preceding example and experiment with it. For example, try declar-
ing a derived pointer and having it access an object of the base class.

10.2 INTRODUCTION TO VIRTUAL FUNCTIONS

A virtual function is a member function that is declared within a base class and redefined by a
derived class. To create a virtual function, precede the function’s declaration with the keyword
virtual. When a class containing a virtual function is inherited, the derived class redefines the
virtual function relative to the derived class. In essence, virtual functions implement the ”one
interface, multiple methods” philosophy that underlies polymorphism. The virtual function
within the base class defines the form of the interface to that function. Each redefinition of
the virtual function by a derived class implements its operation as it relates specifically to the
derived class. That is, the redefinition creates a specific method. When a virtual function is
redefined by a derived class, the keyword virtual is not needed.

A virtual function can be called just like any other member function. However, what makes a
virtual function interesting-and capable of supporting run-time polymorphism-is what happens
when a virtual function is called through a pointer. From the preceding section you know that
a base class pointer can be used to point to a derived class object. When a base pointer points
to a derived object that contains a virtual function and that virtual function is called through
that pointer, C++ determines which version of that function will be executed based upon the
type of object being pointed to by the pointer. And, this determination is made at run time.
Put differently, it is the type of the object pointed to at the time when the call occurs that
determines which version of the virtual function will be executed. Therefore, if two or more
different class are derived from a base class that contains a virtual function, then when different
objects are pointed to by a base pointer, different versions of the virtual function are executed.
This process is the way that run-time polymorphism is achieved. In fact, a class that contains
a virtual function is referred to as a polymorphic class.

EXAMPLES

1. Here is a short example that uses a virtual function:

// A simple example using a virtual function.

#include <iostream >

using namespace std;

class base

{

public:

int i;

264

VIRTUAL FUNCTIONS
10.2. INTRODUCTION TO VIRTUAL FUNCTIONS

base(int x) { i = x; }

virtual void func()

{

cout << "Using base version of func(): ";

cout << i << ’\n’;

}

};

class derived1 : public base

{

public:

derived1(int x) : base(x) {}

void func()

{

cout << "Using derived1 ’s version of func(): ";

cout << i*i << ’\n’;

}

};

class derived2 : public base

{

public:

derived2(int x) : base(x) {}

void func()

{

cout << "Using derived2 ’s version of func(): ";

cout << i+i << ’\n’;

}

};

int main()

{

base *p;

base ob(10);

derived1 d_ob1 (10);

derived2 d_ob2 (10);

p = &ob;

p->func(); // use base’s func()

p = &d_ob1;

p->func(); // use derived1 ’s func()

p = &d_ob2;

p->func(); // use derived2 ’s func()

return 0;

}

This program displays the following output:

Using base version of func(): 10

265

TEACH YOURSELF
C++

Using derived1’s version of func(): 100

Using derived2’s version of func(): 20

The redefinition of a virtual function inside a derived class might, at first, seem somewhat
similar to function overloading. However, the two processes are distinctly different. First,
an overloaded function must differ in type and/or number of parameters, while a redefined
virtual function must have precisely the same type and number of parameters and the
same return type. (In fact, if you change either the number or type of parameters when
redefining a virtual function, it simply becomes an overloaded function and its virtual
nature is lost.) Further, virtual functions must be class members. This is not the case for
overloaded functions. Also, while destructor functions can be virtual, constructors cannot.
Because of the difference between overloaded functions and redefined virtual functions,
the term overriding is used to describe virtual function redefinition.

As you can see, the example program creates three classes. The base class defines the
virtual function func(). This class is then inherited by both derived1 and derived2.
Each of these classes overrides func() with its individual implementation. Inside main(),
the base class pointer p is declared along with objects of type base, derived1, and
derived2. First, p is assigned the address ob ob (an object of type base). When func()
is called by using [, it is the version in base that is used. Next, p is assigned the address
of d ob1 and func() is called again. Because it is the type of the object pointed to that
determines which virtual function will be called, this time it is the overridden version
in derived1 that is executed. Finally, p is assigned the address of d ob2 and func()
is called again, This time, it is the version of func() defined inside derived2 that is
executed.

The key points to understand from the preceding example are that the type of the ob-
ject being pointed to determines which version of an overridden virtual function will be
executed when accessed via a base class pointer, and that this decision is made at run
time.

2. Virtual functions are hierarchical in order of inheritance. Further, when a derived class
does not override a virtual function, the function defined within its base class is used. For
example, here is a slightly different version of the preceding program:

// Virtual functions are hierarchical.

#include <iostream >

using namespace std;

class base

{

public:

int i;

base(int x) { i = x; }

virtual void func()

{

cout << "Using base version of func(): ";

cout << i << ’\n’;

}

};

class derived1 : public base

{

public:

266

VIRTUAL FUNCTIONS
10.2. INTRODUCTION TO VIRTUAL FUNCTIONS

derived1(int x) : base(x) {}

void func()

{

cout << "Using derived1 ’s version of func(): ";

cout << i*i << ’\n’;

}

};

class derived2 : public base

{

public:

derived2(int x) : base(x) {}

// derived2 does not override func()

};

int main()

{

base *p;

base ob(10);

derived1 d_ob1 (10);

derived2 d_ob2 (10);

p = &ob;

p->func(); // use base’s func()

p = &d_ob1;

p->func(); // use derived1 ’s func()

p = &d_ob2;

p->func(); // use base’s func()

return 0;

}

This program displays the following output:

Using base version of func(): 10

Using derived1’s version of func(): 100

Using base version of func(): 10

In this version, derived2 does not override func(). When p is assigned d ob2 and func()
is called, base’s version is used because it is next up in the class hierarchy. In general,
when a derived class does not override a virtual function, the base class’s version is used.

3. The next example shows how a virtual function can respond to random events that occur at
run time. This program selects between d ob1 and d ob2 based upon the value returned
by the standard random number generator rand(). Keep in mind that the version of
func() executed is resolved at run time. (Indeed, it is impossible to resolve the calls to
func() at compile time.)

/*

This example illustrates how a virtual function

can be used to respond to random events occurring

267

TEACH YOURSELF
C++

at run time.

*/

#include <iostream >

#include <cstdlib >

using namespace std;

class base

{

public:

int i;

base(int x) { i = x; }

virtual void func()

{

cout << "Using base version of func(): ";

cout << i << ’\n’;

}

};

class derived1 : public base

{

public:

derived1(int x) : base(x) {}

void func()

{

cout << "Using derived1 ’s version of func(): ";

cout << i*i << ’\n’;

}

};

class derived2 : public base

{

public:

derived2(int x) : base(x) {}

void func()

{

cout << "Using derived2 ’s version of func(): ";

cout << i+i << ’\n’;

}

};

int main()

{

base *p;

derived1 d_ob1 (10);

derived2 d_ob2 (10);

int i, j;

for(i=0; i<10; i++)

{

j = rand();

if((j%2))

268

VIRTUAL FUNCTIONS
10.2. INTRODUCTION TO VIRTUAL FUNCTIONS

p = &d_ob1; // if odd use d_ob1

else

p = &d_ob2; // if even use d_ob2

p->func(); // call appropriate function

}

return 0;

}

4. Here is a more practical example of how a virtual function can be used. This program
creates a generic base class called area that holds two dimensions of a figure. It also
declares a virtual function called getarea() that, when overridden by derived classes,
returns the area of the type of figure defined by the derived class. In this case, the
declaration of getarea() inside the base class determines the nature of the interface. The
actual implementation is left to the classes that inherit it. In this example, the area of a
triangle and a rectangle are computed.

// Use virtual function to define interface.

#include <iostream >

using namespace std;

class area

{

double dim1 , dim2; // dimensions of figure

public:

void setarea(double d1 , double d2)

{

dim1 = d1;

dim2 = d2;

}

void getdim(double &d1 , double &d2)

{

d1 = dim1;

d2 = dim2;

}

virtual double getarea ()

{

cout << "You must override this function\n";

return 0.0;

}

};

class rectangle : public area

{

public:

double getarea ()

{

double d1 , d2;

getdim(d1 , d2);

return d1 * d2;

}

};

269

TEACH YOURSELF
C++

class triangle : public area

{

public:

double getarea ()

{

double d1 , d2;

getdim(d1 , d2);

return 0.5 * d1 * d2;

}

};

int main()

{

area *p;

rectangle r;

triangle t;

r.setarea (3.3, 4.5);

t.setarea (4.0, 5.0);

p = &r;

cout << "Rectangle has area: " << p->getarea () << ’\n’;

p = &t;

cout << "Triangle has area: " << p->getarea () << ’\n’;

return 0;

}

Notice that the definition of getarea() inside area is just a placeholder and performs
no real function. Because area is not linked to any specific type of figure, there is no
meaningful definition that can be given to getarea() inside area. In fact, getarea()
must be overridden by a derived class in order to be useful. In the next section, you will
see a way to enforce this.

EXERCISES

1. Write a program that creates a base class called num. Have this class hold an integer
value and contain a virtual function called shownum(). Create two derived classes called
outhex and outoct that inherit num. Have the derived classs override shownum() so
that it displays the value in hexadecimal and octal, respectively.

2. Write a program that creates a base class called dist that stores the distance between two
points in a double variable. In dist, create a virtual function called trav time() that
outputs the time it takes to travel that distance, assuming that the distance is in miles and
the speed is 60 miles per hour. In a derived class called metric, override trav time() so
that it outputs the travel time assuming that the distance is in kilometers and the speed
is 100 kilometers per hour.

270

VIRTUAL FUNCTIONS
10.3. MORE ABOUT VIRTUAL FUNCTIONS

10.3 MORE ABOUT VIRTUAL FUNCTIONS

As Example 4 from the preceding section illustrates, sometimes when a virtual function is
declared in the base class there is no meaningful operation for it to perform. This situation is
common because often a base class does not define a complete class by itself. Instead, it simply
supplies a core set of member functions and variables to which the derived class supplies the
remainder. When there is no meaningful action for a base class virtual function to perform, the
implication is that any derived class must override this function. To ensure that this will occur,
C++ supports pure virtual functions.
A pure virtual function has no definition relative to the base class. Only the function’s prototype
is included. To make a pure virtual function, use this general form:

virtual type func_name(parameter_list)=0;

The key part of this declaration is the setting of the function equal to 0. This tells the compiler
that no body exists for this function relative to the base class. When a virtual function is made
pure, it forces any derived class to override it. If a derived class does not, a compile-time error
results. Thus, making a virtual function pure is a way to guarantee that a derived class will
provide its own redefinition.
When a class contains at least one pure virtual function, it is referred to as an abstract class.
Since an abstract class contains at least one function for which no body exists, it is, technically,
an incomplete type, and no objects of that class can be created. Thus, abstract classes exist
only to be inherited. They are neither intended nor able to stand alone. It is important to
understand, however, that you can still create a pointer to an abstract class, since it is through
the use of base class pointers that run-time polymorphism is achieved. (It is also permissible
to have a reference to an abstract class.)
When a virtual function is inherited, so is its virtual nature. This means that when a derived
class inherits a virtual function from a base class and then the derived class is used as a base for
yet another derived class, the virtual function can be overridden by the final derived class (as
well as the first derived class). For example, if base class B contains a virtual function called
f(), and D1 inherits B and D2 inherits D1, both D1 and D2 can override f() relative to their
respective classes.

EXAMPLES

1. Here is an improved version of the program shown in Example 4 in the predeing section.
In this version, the function getarea() is declared as pure in the base class area.

// Create an abstract class

#include <iostream >

using namespace std;

class area

{

double dim1 , dim2; // dimensions of figure

public:

void setarea(double d1 , double d2)

{

dim1 = d1;

dim2 = d2;

}

void getdim(double &d1 , double &d2)

{

d1 = dim1;

271

TEACH YOURSELF
C++

d2 = dim2;

}

virtual double getarea () = 0; // pure virtual function

};

class rectangle : public area

{

public:

double getarea ()

{

double d1 , d2;

getdim(d1 , d2);

return d1 * d2;

}

};

class triangle : public area

{

public:

double getarea ()

{

double d1 , d2;

getdim(d1 , d2);

return 0.5 * d1 * d2;

}

};

int main()

{

area *p;

rectangle r;

triangle t;

r.setarea (3.3, 4.5);

t.setarea (4.0, 5.0);

p = &r;

cout << "Rectangle has area: " << p->getarea () << ’\n’;

p = &t;

cout << "Triangle has area: " << p->getarea () << ’\n’;

return 0;

}

Now that getarea() is pure, it ensures that each derived class will override it.

2. The following program illustrates how a function’s virtual nature is preserved when it is
inherited:

// Virtual functions retain their virtual nature when

inherited ,

272

VIRTUAL FUNCTIONS
10.3. MORE ABOUT VIRTUAL FUNCTIONS

#include <iostream >

using namespace std;

class base

{

public:

virtual void func()

{

cout << "Using base version of func()\n";

}

};

class derived1 : public base

{

public:

void func()

{

cout << "Using derived1 ’s version of func()\n";

}

};

// derived2 inherits derived1.

class derived2 : public derived1

{

public:

void func()

{

cout << "Using derived2 ’s version of func()\n";

}

};

int main()

{

base *p;

base ob;

derived1 d_ob1;

derived2 d_ob2;

p = &ob;

p->func(); // use base’s func()

p = &d_ob1;

p->func(); // use derived1 ’s func()

p = &d_ob2;

p->func(); // use derived2 ’s func()

return 0;

}

In this program, the virtual function func() is first inherited by derived1, which overrides
it relative to itself. Next, derived2 inherits derived1. In derived2, func() is again

273

TEACH YOURSELF
C++

overridden.

Because virtual functions are hierarchical, if derived2 did not override func(), when
d ob2 was accessed, derived1’s func() would have been used. If neither derived1 nor
derived2 had overridden func(), all references to it would have been routed to the one
defined in base.

EXERCISES

1. On your own, experiment with the two example programs. Specifically, try creating an
object by using area from Example 1 and observe the error message. In Example 2, try
removing the redefinition of func() within derived2. Confirm that, indeed, the version
inside derived1 is used.

2. Why can’t an object be created by using an abstract class?

3. In Example 2, what happens if you remove only the redefinition of func() inside de-
rived1? Does the program still compile and run? If so, why?

10.4 APPLYING POLYMORPHISM

Now that you know how to use a virtual function to achieve run-time polymorphism, it is time to
consider how and why to use it. As has been stated many times in this book, polymorphism is the
process by which a common interface is applied to two or more similar (but technically different)
situations, thus implementing the ”one interface, multiple methods” philosophy. Polymorphism
is important because it can greatly simplify complex systems. A single, well-defined interface
is used to access a number of different but related actions, and artificial complexity is removed.
In essence, polymorphism allows the logical relationship of similar actions to become apparent;
thus, the program is easier ti understand and maintain. When related actions are accessed
through a common interface, you have less to remember.

There are two terms that are often linked to OOP in general and to C++ specifically. They are
early binding and late binding. It is important that you know what they mean. Early binding
essentially refers to those events that can be known at compile time. Specifically, it refers
to those function calls that can be resolved during compilation. Early bound entities include
”normal” functions, overloaded functions, and non-virtual member and friend functions. When
these types of functions are compiled, all address information necessary to call them is known
at compile time. The main advantage of early binding (and the reason that it is so widely used)
is that it is very efficient. Calls to functions bound at compile time are the fastest types of
function calls. The main disadvantage is lack of flexibility.

Late binding refers to events that must occur at run time. A late bound function call is one in
which the address of the function to be called is not known until the program runs. In C++,
a virtual function is a late bound object. When a virtual function is accessed via a base class
pointer, the program must determine at run time what type of object is being pointed to and
then select which version of the overridden function to execute. The main advantage of late
binding is flexibility at run time. Your program is free to respond to random events without
having to contain large amounts of ”contingency code.” Its primary disadvantage is that there
is more overhead associated with a function call. This generally makes such calls slower than
those that occur with early binding.

Because of the potential efficiency trade-offs, you must decide when it is appropriate to use
early binding and when to use late binding.

274

VIRTUAL FUNCTIONS
10.4. APPLYING POLYMORPHISM

EXAMPLES
1. Here is a program that illustrates ”one interface, multiple methods.” It defines an abstract

list class for integer values. The interface to the list is defined by the pure virtual functions
store() and retrieve(). To store a value, call retrieve(. The base class list does not
define any default methods for these actions. Instead, each derived class defines exactly
what type of list will be maintained. In the program, two types of lists are implemented: a
queue and a stack. Although the two lists operate completely differently, each is accessed
using the same interface. You should study this program carefully.

// Demonstrate virtual functions.

#include <iostream >

#include <cstdlib >

using namespace std;

class list

{

public:

list *head; // pointer to start of list

list *tail; // pointer to end of list

list *next; // pointer to next item

int num; // value to be stored

list() { head = tail = next = NULL; }

virtual void store(int i) = 0;

virtual int retrieve () = 0;

};

// Create a queue -type list.

class queue : public list

{

public:

void store(int i);

int retrieve ();

};

void queue:: store(int i)

{

list *item;

item = new queue;

if(!item)

{

cout << "Allocation error.\n";

exit (1);

}

item ->num = i;

// put on end of list

if(tail)

tail ->next = item;

tail = item;

item ->next = NULL;

275

TEACH YOURSELF
C++

if(!head)

head = tail;

}

int queue:: retrieve ()

{

int i;

list *p;

if(!head)

{

cout << "List empty.\n";

return 0;

}

// remove from start of list

i = head ->num;

p = head;

head = head ->next;

delete p;

return i;

}

// Create a stack -type list.

class stack : public list

{

public:

void store(int i);

int retrieve ();

};

void stack:: store(int i)

{

list *item;

item = new stack;

if(!item)

{

cout << "Allocation error.\n";

exit (1);

}

item ->num = i;

// put on front of list for stack -like operation

if(head)

item ->next = head;

head = item;

if(!tail)

tail = head;

}

276

VIRTUAL FUNCTIONS
10.4. APPLYING POLYMORPHISM

int stack:: retrieve ()

{

int i;

list *p;

if(!head)

{

cout << "List empty.\n";

return 0;

}

// remove from start of list

i = head ->num;

p = head;

head = head ->next;

delete p;

return i;

}

int main()

{

list *p;

// demonstrate queue

queue q_ob;

p = &q_ob; // point to queue

p->store (1);

p->store (2);

p->store (3);

cout << "Queue: ";

cout << p->retrieve ();

cout << p->retrieve ();

cout << p->retrieve ();

cout << ’\n’;

// demonstrate stack

stack s_ob;

p = &s_ob; // point to stack

p->store (1);

p->store (2);

p->store (3);

cout << "Stack: ";

cout << p->retrieve ();

cout << p->retrieve ();

277

TEACH YOURSELF
C++

cout << p->retrieve ();

cout << ’\n’;

return 0;

}

2. The main() function in the list program just shown simply illustrates that the list classes
do, indeed, work. However, to begin to see why run-time polymorphism is so powerful,
try using this main() instead:

int main()

{

list *p;

queue q_ob;

stack s_ob;

char ch;

int i;

for(i=0; i<10; i++)

{

cout << "Stack or Queue? (S/Q): ";

cin >> ch;

ch = tolower(ch);

if(ch==’q’)

p = &q_ob;

else

p = &s_ob;

p->store(i);

}

cout << "Enter T to terminate\n";

for (;;)

{

cout << "Remove from Stack or Queue? (S/Q): ";

cin >> ch;

ch = tolower(ch);

if(ch==’t’)

break;

if(ch==’q’)

p = &q_ob;

else

p = &s_ob;

cout << p->retrieve () << ’\n’;

}

cout << ’\n’;

return 0;

}

This main() illustrates how random events that occur at run time can be easily handled
by using virtual functions and run-time polymorphism. The program executes a for loop

278

VIRTUAL FUNCTIONS
SKILLS CHECK

running from 0 to 9. Each iteration through the loop, you are asked to choose into which
type of list-stack or the queue-you want to put a value. According to your answer, the
base pointer p is set to point to the correct object and the current value of i is stored.
Once the loop is finished, another loop begins that prompts you to indicate you to indicate
from which list to remove a value. Once again, it is your response that determines which
list is selected.

While this example is trivial, you should be able to see how run-time to polymorphism
can simplify a program that must respond to random events. For instance, the Windows
operating system interfaces to a program by sending it messages. As far as the program
is concerned, these messages are generated at random, and you r program must respond
to each one as it is received. One way to respond to these messages is through the use of
virtual functions.

EXERCISES
1. Add another type of list to the program in Example 1. Have this version maintain a sorted

list (in ascending order). Call this list sorted.

2. On you r own, think about ways in which you can apply run-time polymorphism to simplify
the solutions to certain types of problems.

SKILLS CHECK

Mastery Skills Check

At this point you should be able to perform the following exercises and answer the questions.

1. What is a virtual function?

2. What types of functions cannot be made virtual?

3. How does a virtual function help achieve run-time polymorphism? Be specific.

4. What is a pure virtual function?

5. What is an abstract class? What is a polymorphic class?

6. Is the following fragment correct? If not, why not?

class base

{

public:

virtual int(int a) = 0;

// ...

};

class derived : public base

{

public:

int f(int a, int b) { return a*b; }

// ...

}:

7. Is the virtual quality inherited?

8. On your own, experiment with virtual functions at this time. This is an important concept
and you should master the technique.

279

TEACH YOURSELF
C++

Cumulative Skills Check

This section checks how well you have integrated material in this chapter with that from the
preceding chapters.

1. Enhance the list example from Section 10.4, Example 1, so that it overloads the + and –
operators. Have the + store an element and the – retrieve an element.

2. How do virtual functions differ from overloaded functions?

3. On your own, reexamine some of the function overloading examples presented earlier in
this book. Determine which can be converted to virtual functions. Also, think about ways
in which a virtual function can solve some of your own programming problems.

280

11
Templates and Exception Handling

Chapter Objectives

11.1 Generic functions

11.2 Generic classes

11.3 Exception handling

11.4 More about exception handling

11.5 Handling exceptions thrown by new

281

TEACH YOURSELF
C++

This chapter discusses two of C++’s most important high-level features: templates and
exception handling. While neither was part of the original specification for C++, both

were added several years ago and are defined by Standard C++. They are supported by all
modern C++ compilers. These two features help you achieve two of the most elusive goals in
programming: the creation of reusable and resilient code.

Using templates, it is possible to create generic functions and classes. In a generic function or
class, they type of data that operated upon a specified as a parameter. This allows you to use
one function or class with several different types of data without having to explicitly recode a
specific version for each different data type. Thus, templates allow you to create reusable code.
Both generic functions and generic classes are discussed here.

Exception handling is the subsystem of C++ that allows you to handle errors that occur at run
time in a structured and controlled manner. With C++ exception handling, your program can
automatically invoke an error handling routine when an error occurs. The principal advantage
of exception handling is that it automates much of the error handling code that previously had
to be coded ”by hand” in any large program. The proper use of exception handling helps you
to create resilient code.

Review Skills Check

Before proceeding, you should be able to correctly answer the following questions and do the
exercises.

1. What is a virtual function?

2. What is a pure virtual function? If a class declaration contains a pure virtual function,
what is that class called, and what restrictions apply to its usage?

3. Run-time polymorphism is achieved through the use of functions and
class pointers. (Fill in the missing words.)

4. If, in a class hierarchy, a derived class neglects to override a (non-pure) virtual function,
what happens when an object of that derived class calls that function?

5. What is the main advantage of run-time polymorphism? What is its potential disadvan-
tage?

11.1 GENERIC FUNCTIONS

A generic function defines a general set of operations that will be applied to various types
of data. A generic function has the type of data that it will operate upon passed to it as a
parameter. Using this mechanism, the same general procedure can be applied to a wide range
of data. As you know, many algorithms are logically the same no matter what type of data is
being operated upon. For example, the Quicksort algorithm is the same whether it is applied
to an array of integers or an array of floats. It is just that the type of the data being sorted is
different. By creating a generic function, you can define, independent of any data, the nature of
the algorithm. Once this is done, the compiler automatically generates the correct code for the
type of data that is actually used when you execute the function. In essence, when you create
a generic function you are creating a function that can automatically overload itself.

A generic function is created using the keyword template. The normal meaning of the word
template accurately reflects the keyword’s use in C++. It is used to create a template (or
framework) that describes what a function will do, leaving it to the compiler to fill in the
details as needed. The general form of a template function definition is shown here:

282

TEMPLATES AND EXCEPTION HANDLING
11.1. GENERIC FUNCTIONS

template <class Ttype >ret_type func_name(parameter list)

{

// body of function

}

Here Ttype is a placeholder name for a data type used by the function. This name can be used
within the function definition. However, it is only a placeholder; the compiler will automatically
replace this placeholder with an actual data type when it creates a specific version of the
function.

Although the use of the keyword class to specify a generic type in a template declaration is
traditional, you can also use the keyword typename.

EXAMPLES

1. The following program creates a generic function that swaps the values of the two variables
it is called with. Because the general process of exchanging two values is independent of
the type of the variables, this process is a good choice to be made into a generic function.

// Function template example.

#include <iostream >

using namespace std;

// This is a function template.

template <class X> void swapargs(X &a, X &b)

{

X temp;

temp = a;

a = b;

b= temp;

}

int main()

{

int i=10, j=20;

float x=10, y=23.3;

cout << "Original i, j: " << i << ’ ’ << j << endl;

cout << "Original x, y: " << x << ’ ’ << y << endl;

swapargs(i, j); // swap integers

swapargs(x, y); // swap floats

cout << "Swapped i, j: " << i << ’ ’ << j << endl;

cout << "Swapped x, y: " << x << ’ ’ << y << endl;

return 0;

}

The keyword template is used to define a generic function. The line:

template <class X> void swapargs(X &a, X &b)

283

TEACH YOURSELF
C++

tells the compiler two things: that a template is being created and that a generic definition
is beginning. Here X is a generic type that is used as a placeholder. After the template
portion, the function swapargs() is declared, using X as the data type of the values that
will be swapped. In main(), the swapargs() function is called using two different types
of data: integers and floats. Because swapargs() is a generic function, the compiler
automatically creates two versions of swapargs()-one that will exchange integer values
and one that will exchange floating-point values. You should compile and try this program
now.

Here are some other terms that are sometimes used when templates are discussed and
that you might encounter in other C++ literature. First, a generic function (that is, a
function definition preceded by a template statement) is also called a template function.
When the compiler creates a specific version of this function, it is said to have created a
generated function. The act of generating a function is referred to as instantiating it. Put
differently, a generated function is a specific instance of a template function.

2. The template portion of a generic function definition does not have to be on the same
line as the function’s name. For example, the following is also a common way to format
the swapargs() function:

template <class X>

void swapargs(X &a, X &b)

{

X temp;

temp = a;

a = b;

b= temp;

}

If you use this form, it is important to understand that no other statements can occur
between the template statement and the start of the generic function definition. For
example, the following fragment will not compile:

// This will not compile.

template <class X>

int i; // this is an error

void swapargs(X &a, X &b)

{

X temp;

temp = a;

a = b;

b= temp;

}

As the comments imply, the template specification must directly precede the rest of the
function definition.

3. As mentioned, instead of using the keyword class, you can use the keyword typename
to specify a generic type in a template definition. For example, here is another way to
declare the swapargs() function.

// Use typename

template <typename X> void swapargs(X &a, X &b)

284

TEMPLATES AND EXCEPTION HANDLING
11.1. GENERIC FUNCTIONS

{

X temp;

temp = a;

a = b;

b= temp;

}

The typename keyword can also be used to specify an unknown type within a template,
but this use is beyond the scope of this book.

4. You can define more than one generic data type with the template statement, using a
comma-separated list. For example, this program creates a generic function that has two
generic types:

#include <iostream >

using namespace std;

template <class type1 , class type2 >

void myfunc(type1 x, type2 y)

{

cout << x << ’ ’ << y << endl;

}

int main()

{

myfunc (10, "hi");

myfunc (0.23, 10L);

return 0;

}

In this example, the placeholder types type1 and type2 are replaced by the compiler with
the data types int and char * and double and long, respectively, when the compiler
generates the specific instances of myfunc().

Remember: When you create a generic function, you are, in essence, allowing the
compiler to generate as many different versions of that function as necessary to handle
the various ways that your program calls that function.

5. Generic functions are similar to overloaded functions except that they are more restrictive.
When functions are overloaded, you can have different actions performed within the body
of each function. But a generic function must perform the same general action for all
versions. For example, the following overloaded functions cannot be replaced by a generic
function because they do not do the same thing:

void outdata(int i)

{

cout << i;

}

void outdata(double d)

{

cout << setprecision (10) << setfill(’#’);

285

TEACH YOURSELF
C++

cout << d;

cout << setprecision (6) << setfill(’ ’);

}

6. Even though a template function overloads itself as needed, you can explicitly overload
one, too. If you overload a generic function, that overloaded function overrides (or *hides*)
the generic function relative to that specific version. For example, consider this version of
Example 1:

// Overriding a template function.

#include <iostream >

using namespace std;

// This is a function template.

template <class X> void swapargs(X &a, X &b)

{

X temp;

temp = a;

a = b;

b= temp;

}

// This overrides the generic version of swapargs ().

void swapargs(int a, int b)

{

cout << "this is inside swapargs(int ,int)\n";

}

int main()

{

int i=10, j=20;

float x=10, y=23.3;

cout << "Original i, j: " << i << ’ ’ << j << endl;

cout << "Original x, y: " << x << ’ ’ << y << endl;

swapargs(i, j); // calls overloaded swapargs ()

swapargs(x, y); // swap floats

cout << "Swapped i, j: " << i << ’ ’ << j << endl;

cout << "Swapped x, y: " << x << ’ ’ << y << endl;

return 0;

}

As the comments indicate, when swapargs(i,j) is called, it invokes the explicitly over-
loaded version of swapargs() defined in the program. Thus, the compiler does not
generate this version of the generic swapargs() function because the generic function is
overridden by the explicit overloading.

Manual overloading of a template, as shown in this example, allows you to tailor a version
of a generic function to accommodate a special situation. However, in general, if you need

286

TEMPLATES AND EXCEPTION HANDLING
11.2. GENERIC CLASSES

to have different versions of a function for different data types, you should use overloaded
functions rather than templates.

EXERCISES

1. If you have not done so, try each of the preceding examples.

2. Write a generic function, called min(), that returns the lesser of its two arguments. For
example, min(3, 4) will return 3 and min(’c’, ’a’ will return a. Demonstrate your
function in a program.

3. A good candidate for a template function is called find(). This function searches an array
for an object. It returns either the index of the matching object (if one is found) or -1 if no
match is found. Here is the prototype for a specific version of find(). Convert find() into
a generic function and demonstrate your solution within a program. (The size parameter
specifies the number of elements in the array.)

int find(int object , int *list , int size)

{

// ...

}

4. In your own words, explain why generic functions are valuable and may help simplify the
source code to program that you create.

11.2 GENERIC CLASSES

In addition to defining generic functions, you can also define generic classes. When you do this,
you create a class that defines all algorithms used by that class, but the actual type of the data
being manipulated will be specified as a parameter when objects of that class are created.
Generic classes are useful when a class contains generalizable logic. For example, the same
algorithm that maintains a queue of integers will also work for a queue of characters. Also, the
same mechanism that maintains a linked list of mailing addresses will also maintain a linked
list of auto part information. By using a generic class, you can create a class that will maintain
a queue, a linked list, and so on for any type of data. The compiler will automatically generate
the correct type of object based upon the type you specify when the object is created.
The general form of a generic class declaration is shown here:

template <class Ttype > class class_name

{

.

.

.

};

Here Ttype is the placeholder type name that will be specified when a class is instantiated. If
necessary, you can define more than one generic data type by using a comma-separated list.
Once you have created a generic class, you create a specific instance of that class by using the
following general form:

class_name <type > ob;

Here type is the type name of the data that the class will be operating upon.
Member functions of a generic class are, themselves, automatically generic. They need not be
explicitly specified as such using template.

287

TEACH YOURSELF
C++

As you will see in Chapter 14, C++ provides a library that is built upon template classes. This
library is usually referred to as the Standard Template Library, or STL for short. It provides
generic versions of the most commonly used algorithms and data structures. If you want to use
the STL effectively, you’ll need a solid understanding of template classes and their syntax.

EXAMPLES

1. This program creates a very simple generic singly linked list class. It then demonstrates
the class by creating a linked list that stores characters.

// A simple generic linked list.

#include <iostream >

using namespace std;

template <class data_t > class list

{

data_t data;

list *next;

public:

list(data_t d);

void add(list *node) { node ->next = this; next = 0; }

list *getnext () { return next; }

data_t getdata () { return data; }

};

template <class data_t > list <data_t >:: list(data_t d)

{

data = d;

next = 0;

}

int main()

{

list <char > start(’a’);

list <char > *p, *last;

int i;

// build a list

last = &start;

for(i=1; i<26; i++)

{

p = new list <char >(’a’ + i);

p->add(last);

last = p;

}

// follow the list

p = &start;

while(p)

{

cout << p->getdata ();

p = p->getnext ();

288

TEMPLATES AND EXCEPTION HANDLING
11.2. GENERIC CLASSES

}

return 0;

}

As you can see, the declaration of a generic class is similar to that of a generic function.
The actual type of data stored by the list is generic in the class declaration. It is not until
an object of the list is declared that the actual data type is determined. In this example,
objects and pointers are created inside main() that specify that the data type of the list
will be char. Pay special attention to this declaration:

list <char > start(’a’);

Notice how the desired data type is passed inside the angle brackets.

You should enter and execute this program. It builds a linked list that contains the
characters of the alphabet and then displays them. However, by simply changing the type
of data specified when list objects are created, you can change the type of data stored by
the list. For example, you could create another object that stores integers by using this
declaration:

list <int > int_start (1);

You can also use list to store data types that you create. For example, if you want to
store address information, use this structure:

struct addr

{

char name [40];

char street [40];

char city [30];

char state [3];

char zip [12];

}

Then, to use list to generate objects that will store objects of type addr, use a declaration
like this (assuming that structvar contains a valid addr structure):

list <addr > obj(structvar);

2. Here is another example of a generic class. It is a reworking of the stack class first
introduced in Chapter 1. However, in this case, stack has been made into a template
class. Thus, it can be used to store any type of object. In the example, shown here, a
character stack and a floating-point stack are created:

// This function demonstrates a generic stack ,

#include <iostream >

using namespace std;

#define SIZE 10

// Create a generic stack class

template <class StackType > class stack

{

StackType stck[SIZE]; // holds the stack

int tos; // index of top of stack

289

TEACH YOURSELF
C++

public:

void init() { tos = 0; } // initialize stack

void push(StackType ch); // push object on stack

StackType pop(); // pop object from stack

};

// Push an object.

template <class StackType >

void stack <StackType >:: push(StackType ob)

{

if(tos==SIZE)

{

cout << "Stack is full.\n";

return;

}

stck[tos] = ob;

tos ++;

}

// Pop an object

template <class StackType >

StackType stack <StackType >::pop()

{

if(tos ==0)

{

cout << "Stack is empty.\n";

return 0; // return null on empty stack

}

tos --;

return stck[tos];

}

int main()

{

// Demonstrate character stacks.

stack <char > s1 , s2; // create two stacks

int i;

// initialize the stacks

s1.init();

s2.init();

s1.push(’a’);

s2.push(’x’);

s1.push(’b’);

s2.push(’y’);

s1.push(’c’);

s2.push(’z’);

for(i=0; i<3; i++)

cout << "Pop s1: " << s1.pop() << "\n";

290

TEMPLATES AND EXCEPTION HANDLING
11.2. GENERIC CLASSES

for(i=0; i<3; i++)

cout << "Pop s2: " << s2.pop() << "\n";

// demonstrate double stacks

stack <double > ds1 , ds2; // create two stacks

// initialize the stacks

ds1.init();

ds2.init();

ds1.push (1.1);

ds2.push (2.2);

ds1.push (3.3);

ds2.push (4.4);

ds1.push (5.5);

ds2.push (6.6);

for(i=0; i<3; i++)

cout << "Pop ds1: " << ds1.pop() << "\n";

for(i=0; i<3; i++)

cout << "Pop ds2: " << ds2.pop() << "\n";

return 0;

}

As the stacl class (and the preceding list class) illustrates, generic function and classes
provide a powerful tool that you can use to maximize your programming time because
they allow you to define the general form of an algorithm that can be used with any type
of data. You are saved from the tedium of creating separate implementations for each
data type that you want the algorithm to work with.

3. A template class can have more than one generic data type. Simply declare all the data
types required by the class in a comma-separated list within the template specification.
For example, the following short example creates a class that uses two generic data types:

/*

This example uses two generic data types in a

class definition

*/

#include <iostream >

using namespace std;

template <class Type1 , class Type2 > class myclass

{

Type1 i;

Type2 j;

public:

myclass(Type1 a, Type2 b) { i = a; j = b; }

void show() { cout << i << ’ ’ << j << ’\n’; }

};

int main()

{

291

TEACH YOURSELF
C++

myclass <int , double > ob1(10, 0.23);

myclass <char , char *> ob2(’X’, "This is a test");

ob1.show(); // show int , double

ob2.show(); // show char , char *

return 0;

}

This program produces the following output:

10 0.23

X This is a test

The program declares two types of objects. ob1 uses integer and double data. ob2 uses
a character and a character pointer. For both cases, the compiler automatically generates
the appropriate data and functions to accommodate the way the objects are created.

EXERCISES

1. If you have not yet done so, compile and run the two generic class examples. Try declaring
lists and/or stacks of different data types.

2. Create and demonstrate a generic queue class.

3. Create a generic class, called input, that does the following when its constructor is called:

ä prompts the user for input,

ä inputs the data entered by the user, and

ä reprompts if the data is not within a predetermined range.

Objects of type input should be declared like this:

input ob("prompt message", min_value , max_value)

Here prompt message is the message that prompt for input. The minimum and maximum
acceptable values are specified by min-value and max-value, respectively. (Note: the type
of data entered by the user will be the same as the type of min-valueand max-value.)

11.3 EXCEPTION HANDLING

C++ provides a built-in error handling mechanism that is called exception handling. Using
exception handling, you can more easily manage and respond to run-time errors. C++ exception
handling is built upon three keywords: try, catch, and throw. In the most general terms,
program statements that you want to monitor for exceptions are contained in a try block. If an
exception (i.e., an error) occurs within the try block, it is thrown (using throw. The exception
is caught, using catch, and processed. The following elaborates upon this general description.

As stated, any statement that throws an exception must have been executed from within a try
block. (A function called from within a try block can also throw an exception.) Any exception
must be caught by a catch statement that immediately follows the try statement that throws
the exception. The general form of try and catch are shown here:

292

TEMPLATES AND EXCEPTION HANDLING
11.3. EXCEPTION HANDLING

try

{

// try block

}

catch(type1 arg)

{

// catch block

}

catch(type2 arg)

{

// catch block

}

catch(type3 arg)

{

// catch block

}

.

.

.

catch(typeN arg)

{

// catch block

}

The try block must contain the portion of your program that you want to monitor for errors.
This can be as specific as monitoring a few statements within one function or as all-encompassing
as enclosing the main() function code within a try block (which effectively causes the entire
program to be monitored).
When an exception is thrown, it is caught by its corresponding catch statement, which processes
the exception. There can be more than one catch statement associated with a try. The catch
statement that is used is determined by the type of the exception. That is, if the data type
specified by a catch matches that of the exception, that catch statement if executed (and all
others are bypassed). When an exception is caught, arg will receive its value. If you don’t need
access to the exception itself, specify only type in the catch clause-arg is optional. Any type of
data can be caught, including classes that you create. In fact, class types are frequently used
as exceptions.

The general form of the throw statement is shown here:

throw exception;

throw must be executed either from within the try block proper or from any function that the
code within the block calls (directly or indirectly). exception is the value thrown.

If you throw an exception for which there is no applicable catch statement, an abnormal pro-
gram termination might occur. If your compiler compiles with Standard C++, throwing an
unhandled exception causes the standard library function terminate() to be invoked. By
default, terminate() calls abort() to stop your program, but you can specify your own ter-
mination handler, if you like. You will need to refer to your compiler’s library reference for
details.

EXAMPLES

1. Here is a simple example that shows the way C++ exception handling operates:

// A simple exception handling example.

293

TEACH YOURSELF
C++

#include <iostream >

using namespace std;

int main()

{

cout << "start\n";

try // start a try block

{

cout << "Inside try block\n";

throw 10; // throw an error

cout << "This will not execute";

}

catch(int i) // catch an error

{

cout << "Caught One! Number is: ";

cout << i << "\n";

}

cout << "end";

return 0;

}

This program displays the following output:

start

Inside try block

Caught One! Number is: 10

end

Look carefully at this program. As you can see, there is a try block containing three
statements and a catch(int i) statement that processes an integer exception. Within the
try block, only two of the three statements will execute: the first cout statement and the
throw. Once an exception has been thrown, control passes to the catch expression and
the try block is terminated. That is, catch is not called. Rather, program execution is
transferred to it. (The stack is automatically reset as needed to accomplish this.) Thus,
the cout statement following the throw will never execute.

After the catch statement executes, program control continues with the statements fol-
lowing the catch. Often, however, a catch block will end with a call to exit(), abort(),
or some other function that causes program termination because exception handling is
frequently used to handle catastrophic errors.

2. As mentioned, the type of the exception must match the type specified in a catch state-
ment. For example, in the preceding example, if you change the type in the catch state-
ment to double, the exception will not be caught, and abnormal termination will occur.
This change is shown here:

// This example will not work.

#include <iostream >

using namespace std;

294

TEMPLATES AND EXCEPTION HANDLING
11.3. EXCEPTION HANDLING

int main()

{

cout << "start\n";

try // start a try block

{

cout << "Inside try block\n";

throw 10; // throw an error

cout << "This will not execute";

}

catch(double i) // won’t work for an int exception

{

cout << "Caught One! Number is: ";

cout << i << "\n";

}

cout << "end";

return 0;

}

This program produces the following output because the integer exception will not be
caught by a double catch statement.

start

Inside try block

Abnormal program termination

3. An exception can be thrown from a statement that is outside the try block as long as the
statement is within a function that is called from within the try block. For example, this
is a valid program:

/*

Throwing an exception from a function outside

the try block.

*/

#include <iostream >

using namespace std;

void Xtest(int test)

{

cout << "Inside Xtest , test is: " << test << "\n";

if(test)

throw test;

}

int main()

{

cout << "start\n";

try // start a try block

{

295

TEACH YOURSELF
C++

Xtest (0);

Xtest (1);

Xtest (2);

}

catch(int i) // catch an error

{

cout << "Caught One! Number is: ";

cout << i << "\n";

}

cout << "end";

return 0;

}

This program produces the following output:

start

Inside try block

Inside Xtest, test is: 0

Inside Xtest, test is: 1

Caught One! Number is: 1

end

4. A try block can be localized to a function. When this is the case, each time the function
is entered, the exception handling relative to that function is reset. For example, examine
this program:

#include <iostream >

using namespace std;

// A try/catch can be inside a function other than main().

void Xhandler(int test)

{

try

{

if(test)

throw test;

}

catch(int i)

{

cout << "Caught One! Ex , #: " << i << ’\n’;

}

}

int main()

{

cout << "start\n";

Xhandler (1);

Xhandler (2);

296

TEMPLATES AND EXCEPTION HANDLING
11.3. EXCEPTION HANDLING

Xhandler (0);

Xhandler (3);

cout << "end";

return 0;

}

This program displays this output:

start

Caught One! Ex. #: 1

Caught One! Ex. #: 2

Caught One! Ex. #: 3

end

As you can see, three exceptions are thrown. After each exception, the function returns.
When the function is called again, the exception handling is reset.

5. As stated earlier, you can have more than one catch associated with a try. In fact, it
is common to do so. However, each catch must catch a different type of exception. For
example, the following program catches both integers and strings:

#include <iostream >

using namespace std;

// Different types of exceptions can be caught.

void Xhandler(int test)

{

try

{

if(test)

throw test;

else

throw "Value is zero.";

}

catch(int i)

{

cout << "Caught One! Ex , #: " << i << ’\n’;

}

catch(const char *str)

{

cout << "Caught a string: ";

cout << str << ’\n’;

}

}

int main()

{

cout << "start\n";

Xhandler (1);

297

TEACH YOURSELF
C++

Xhandler (2);

Xhandler (0);

Xhandler (3);

cout << "end";

return 0;

}

This program produces the following output:

start

Caught One! Ex. #: 1

Caught One! Ex. #: 2

Caught a string: Value is zero

Caught One! Ex. #: 3

end

As you can see, each catch statement responds only to its own type.

In general, catch expressions are checked in the order in which they occur in a program.
Only a matching statement is executed. All other catch blocks are ignored.

EXERCISES

1. By far, the best way to understand how C++ exception handling works is to play with it.
Enter, compile, and run the preceding example programs. Then experiment with them,
altering pieces of them and observing the results.

2. What is wrong with this fragment?

int main()

{

throw 12.23;

3. What is wrong with this fragment?

try

{

// ...

throw ’a’;

// ...

}

catch(char *)

{

// ...

}

4. What will happen if an exception is thrown for which there is no corresponding catch
statement?

298

TEMPLATES AND EXCEPTION HANDLING
11.4. MORE ABOUT EXCEPTION HANDLING

11.4 MORE ABOUT EXCEPTION HANDLING

There are several additional features and nuances to C++ exception handling that can make it
easier and more convenient to use.
In some circumstances you will want an exception handler to catch all exceptions instead of
just a certain type. This is easy to accomplish. Simply use this form of catch:

catch (...)

{

// process all exceptions

}

Here the ellipsis matches any type of data.
You can restrict the type of exceptions that a function can throw back to its caller. Put
differently, you can control what type of exceptions a function can throw outside of itself. In
fact, you can also prevent a function from throwing any exceptions whatsoever. To apply these
restrictions, you must add a throw clause to the function definition. The general form of this
is shown here:

ret_type func_name(arg_list) throw(type_list)

{

// ...

}

Here only those data types contained in the comma-separated type-list may be thrown by the
function. Throwing any other type of expression will cause abnormal program termination. If
you don’t want a function to be able to throw any exceptions, use an empty list.
If your compiler complies with Standard C++, when a function attempts to throw a disallowed
exception the standard library function unexpected() is called. By default, this causes the
terminate() function to be called, which causes abnormal program termination. However, you
can specify your own termination handler, if you like. You will need to refer to your compiler’s
documentation for directions on how this can be accomplished.
If you wish to rethrow an expression from within an exception handler, you can do so by simply
calling throw, by itself with no exception. This causes the current exception to be passed on
to an outer try/catch sequence.

EXAMPLES

1. The following program illustrates catch(...):

// This example catches all exceptions.

#include <iostream >

using namespace std;

void Xhandler(int test)

{

try

{

if(test ==0)

throw test; // throw int

if(test ==1)

throw ’a’; // throw char

if(test ==2)

throw 123.23; // throw double

}

299

TEACH YOURSELF
C++

catch (...) // catch all exceptions

{

cout << "Caught One!\n";

}

}

int main()

{

cout << "start\n";

Xhandler (0);

Xhandler (1);

Xhandler (2);

cout << "end";

return 0;

}

This program displays the following output:

start

Caught One!

Caught One!

Caught One!

end

As you can see, all three throws were caught using the one catch statement.

2. One very good use for catch(...) is as the last catch of a cluster of catches. In this
capacity it provides a useful default or ”catch all” statement. For example, this slightly
different version of the preceding program explicitly catches integer exceptions but relies
upon catch(...) to catch all others:

// This example catch (...) as a default.

#include <iostream >

using namespace std;

void Xhandler(int test)

{

try

{

if(test ==0)

throw test; // throw int

if(test ==1)

throw ’a’; // throw char

if(test ==2)

throw 123.23; // throw double

}

catch(int i) // catch an int exception

{

cout << "Caught " << i << ’\n’;

300

TEMPLATES AND EXCEPTION HANDLING
11.4. MORE ABOUT EXCEPTION HANDLING

}

catch (...) // catch all other exceptions

{

cout << "Caught One!\n";

}

}

int main()

{

cout << "start\n";

Xhandler (0);

Xhandler (1);

Xhandler (2);

cout << "end";

return 0;

}

The output produced by this program is shown here:

start

Caught 0

Caught One!

Caught One!

end

As this example suggest, using catch(...) as a default is a good way to catch all exceptions
that you don’t want to handle explicitly. Also, by catching all exceptions, you prevent an
unhandled exception from causing an abnormal program termination.

3. The following program shows how to restrict the types of exceptions that can be thrown
from a function:

// Restricting function throw types

#include <iostream >

using namespace std;

// This function can only throw ints , chars , and doubles.

void Xhandler(int test) throw(int , char , double)

{

if(test ==0)

throw test; // throw int

if(test ==1)

throw ’a’; // throw char

if(test ==2)

throw 123.23; // throw double

}

int main()

301

TEACH YOURSELF
C++

{

cout << "start\n";

try

{

Xhandler (0); // also , try passing 1 and 2 to Xhandler

}

catch(int i)

{

cout << "Caught int\n";

}

catch(char c)

{

cout << "Caught char\n";

}

catch(double d)

{

cout << "Caught double\n";

}

cout << "end";

return 0;

}

In this program, the function Xhandler() can throw only integer, character, and double
exceptions. If it attempts to throw any other type of exception, an abnormal program
termination will occur. (That is, unexpected() will be called.) To see an example of
this, remove int from the list and retry the program.

It is important to understand that a function can only be restricted in what types of
exceptions it throws back to the try block that called it. That is, a try block within a
function can thrown any type of exception so long as it is caught within that function.
The restriction applies only when throwing an exception out of the function.

4. The following change to Xhandler() prevents it from throwing any exceptions:

// This function can thrown NO exceptions!

void Xhandler(int test) throw()

{

/*

The following statements no longer work. Instead ,

they will cause an abnormal program termination.

*/

if(test ==0)

throw test;

if(test ==0)

throw ’a’;

if(test ==2)

throw 123.23;

}

As you have learned, you can rethrow an exception. The most likely reason for doing so
is to allow multiple handlers access to the exception. For example, perhaps one exception

302

TEMPLATES AND EXCEPTION HANDLING
11.4. MORE ABOUT EXCEPTION HANDLING

handler manages one aspect of an exception and a second handler copes with another. An
exception can only be rethrown from within a catch block (or from any function called
from within that block). When you rethrow an exception, it will not be recaught by the
same catch statement. It will propagate to an outer catch statement. The following
program illustrates rethrowing an exception. It rethrows a char * exception.

// Example of rethrowing an exception.

#include <iostream >

using namespace std;

void Xhandler ()

{

try

{

throw "hello"; // throw a const char *

}

catch(const char *) // catch a const char *

{

cout << "Caught const char * inside Xhandler\n";

throw ; // rethrow const char * out of function

}

}

int main()

{

cout << "start\n";

try

{

Xhandler ();

}

catch(const char *)

{

cout << "Caught const char * inside main\n";

}

cout << "end";

return 0;

}

This program displays the following output:

start

Caught const char * inside Xhandler

Caught const char * inside main

end

EXERCISES

1. Before continuing, compile and run all of the examples in this section. Be sure you
understand why each program produces the output that it does.

303

TEACH YOURSELF
C++

2. What is wrong with this fragment?

try

{

// ...

throw 10;

}

catch(int *p)

{

// ...

}

3. Show one way to fix the preceding fragment.

4. What catch expression catches all types of exceptions?

5. Here is a skeleton for a function called divide().

double divide(double a, double b)

{

// add error handling

return a/b;

}

This function returns the result of dividing a by b. Add error checking to this function
using C++ exception handling. Specifically, prevent a divide-by-zero error. Demonstrate
your solution in a program.

11.5 HANDLING EXCEPTIONS THROWN BY new

In Chapter 4 you learned that the modern specification for the new operator states that it will
throw an exception if an allocation request fails. Since in Chapter 4 exceptions had not yet
been discussed, a description of how to handle that exception was deferred until later. Now the
time has come to examine precisely what occurs when new fails.

Before we begin, it is necessary to state that the material in this section describes the behavior
of new as specified by Standard C++. As you should recall from Chapter 4, the precise action
that new takes on failure has been changed several times since C++ was invented. Specifically,
when C++ was first invented, new returned null on failure. Later this was changed such that
new caused an exception on failure. Also, the name of this exception has changed over time.
Finally, it was decided that a new failure will generate an exception by default, but that a null
pointer could be returned instead, as an option. Thus, new has been implemented differently,
at different times, by compiler manufacturers. Although all compilers will eventually implement
new in compliance with Standard C++, not all currently do. If the code examples shown here
do not work with your compiler, check your compiler’s documentation for details on how it
implements new.

In Standard C++, when an allocation request cannot be honored, new throws a bad alloc
exception. If you don’t catch this exception, your program will be terminated, Although this
behavior is fine for short sample programs, in real applications you must catch this exception
and process it in some rational manner. To have access to this exception, you must include the
header <new> in your program.

Note: Originally this exception was called xalloc, and at the time of this writing many com-
pilers still use the older name. However, bad alloc is the name specified by Standard C++,
and it is the name that will be used in the future.

304

TEMPLATES AND EXCEPTION HANDLING
11.5. HANDLING EXCEPTIONS THROWN BY new

In Standard C++ it is also possible to have new return null instead of throwing an exception
when an allocation failure occurs. This form of new is most useful when you are compiling older
code with a modern C++ compiler. It is also valuable when you are replacing calls to malloc()
with new. This form of new is shown here.

p_var=new(nothrow) type;

Here p var is a pointer variable of type. The nothrow form of new works like the original
version of new from years ago. Since it returns null on failure, it can be ”dropped into” older
code and you won’t have to add exception handling. However, for new code, exceptions provide
a better alternative.

EXAMPLES

1. Here is an example of new that uses a try/catch block to monitor for an allocation
failure.

#include <iostream >

#include <new >

using namespace std;

int main()

{

int *p;

try

{

p = new int; // allocate memory for int

}

catch(bad_alloc xa)

{

cout << "Allocation failure .\n";

return 1;

}

for(*p = 0; *p < 10; (*p)++)

cout << *p << " ";

delete p; // free the memory

return 0;

}

Her if an allocation failure occurs, it is caught by the catch statement.

2. Since the previous program is unlikely to fail under any normal circumstance, the follow-
ing program demonstrates new’s exception-throwing capability bu forcing on allocation
failure. It does this by allocating memory until it is exhausted.

// Force an allocation failure.

#include <iostream >

#include <new >

using namespace std;

int main()

305

TEACH YOURSELF
C++

{

double *p;

// this will eventually run out of memory

do

{

try

{

p = new double [100000];

}

catch(bad_alloc xa)

{

cout << "Allocation failure .\n";

return 1;

}

}

while(p);

return 0;

}

3. The following program shows how to use the new(nothrow) alternative. It reworks te
preceding program and forces an allocation failure.

// Demonstrate the new(nothrow) alternative.

#include <iostream >

#include <new >

using namespace std;

int main()

{

double *p;

// this will eventually run out of memory

do

{

p = new(nothrow) double [100000];

if(p)

cout << "Allocation OK\n";

else

cout << "Allocation Error.\n";

}

while(p);

return 0;

}

As this program demonstrates, when you use the nothrow approach, you must check the
pointer returned by new after each allocation request.

306

TEMPLATES AND EXCEPTION HANDLING
SKILLS CHECK

EXERCISES

1. Explain the difference between the behavior of new and new(nothrow) when an allo-
cation failure occurs.

2. Given the following fragment, show two ways to convert it into modern C++-style code.

p = malloc(sizeof(int));

if(!p)

{

cout << "Allocation error.\n";

exit (1);

}

SKILLS CHECK

Mastery Skills Check

At this point you should be able to perform the following exercises and answer the questions.

1. Create a generic function that returns the mode of an array of values. (The mode of a set
is the value that occurs most often.)

2. Create a generic function that returns the summation of an array of values.

3. Create a generic bubble sort(or use nay other sorting algorithm you like).

4. Rework the stack class so that it can store pairs of different-type objects on the stack.
Demonstrate your solution.

5. Show the general forms of try, catch, and throw. In your own words, describe their
operation.

6. Again, rework the stack class so that stack over-and underflows are handled as exceptions.

7. Check your compiler’s documentation. See whether it supports the terminate() and
unexpected() functions. Generally, these functions can be configured to call any function
you choose. If this is the case with your compiler, try creating your own set of customized
termination functions that handle otherwise unhandled exceptions.

8. Thought question: Give a reason why having new generate an exception is a better
approach than having new return null on failure.

Cumulative Skills Check

This section checks how well you have integrated material in this chapter with that from the
preceding chapter.

1. In Chapter 6, Section 6.7, Example 3, a safe array class was shown. On your own, convert
it into a generic safe array.

2. In Chapter 1, overloaded versions of the abs() function were created. As a better solution,
create a generic abs() function on your own that will return the absolute value of any
numeric object.

307

TEACH YOURSELF
C++

This Page Intentionally Left Blank.

Except for this paragraph of course. Which we felt obligated
to put here because we don’t want you to freak out and
think that we missed printing a page. We didn’t. But, at
this point we are questioning the logic of putting this box
here and then adding a disclaimer about why we put the
paragraph here. So just ignore this paragraph and pretend
that you are looking at a blank page and it is not blank

by mistake.

308

12
Run-Time Type Identification and

the Casting Operators

Chapter Objectives

12.1 Understanding Run-Time Type Identification (RTTI)

12.2 Using dynamic cast

12.3 Using const cast, reinterpret cast, and static cast

309

TEACH YOURSELF
C++

This chapter discusses two features that were recently added to the C++ language: run-time
type identification (RTTI for short) and the new casting operators. RTTI allows you to

identify the type of an object during the execution of your program. The casting operators
give you safer, more controlled ways to cast. As you will see, one of the casting operators,
dynamic cast, relates directly to RTTI, so it makes sense to discuss these two subjects in the
same chapter.

Review Skills Check

Before proceeding, you should be able to correctly answer the following questions and do the
exercises.

1. What is a generic function and what is its general form?

2. What is a generic class and what is its general form?

3. Write a generic function called gexp() that returns the value of one of its arguments
raised to the power of the other.

4. In Chapter 9, Section 9.7, Example 1, a coord class that holds integer coordinates was
created and demonstrated in a program. Create a generic version of the coord class that
can hold coordinates of any type. Demonstrate your solution in a program.

5. Briefly explain how try, catch, and throw work together to provide C++ exception
handling.

6. Can throw be used if execution has not passed through a try block?

7. What purpose do terminate() and unexpected() serve?

8. What form of catch will handle all types of exceptions?

12.1 UNDERSTANDING RUN-TIME TYPE IDENTIFICA-
TION (RTTI)

Run-time type information might be new to you because it is not found in non-polymorphic
languages such as C. In non-polymorphic languages, there is no need for run-time type infor-
mation because the type of each object is known at compile time (i.e., when the program is
written). However, in polymorphic languages such as C++, there can be situations in which
the type of an object is unknown at compile time because the precise nature of that object is
not determined until the program is executed. As you know, C++ implements polymorphism
through the use of class hierarchies, virtual functions, and base class pointers. In this approach,
a base class pointer can be used to point to objects of the base class or to any object derived
from that base. Thus, it is not always possible to know in advance what type of object will be
pointed to by a base pointer at any given moment in time. This determination must be made
at run time, using run-time type identification.
To obtain an object’s type, use typeid. You must include the header <typeinfo> in order to
use typeid. The most common form of typeid is shown here:

typeid(object)

Here object is the object whose type you will be obtaining. typeid returns a reference to an
object of type type info that describes the type of object defined by object. The type info
that describes the type of object defined by object. The type info class defines the following
public members:

310

RUN-TIME TYPE IDENTIFICATION AND THE CASTING OPERATORS
12.1. UNDERSTANDING RUN-TIME TYPE IDENTIFICATION (RTTI)

bool operator ==(const type_info &ob);

bool operator !=(const type_info &ob);

bool before(const type_info &ob);

const char *name();

The overloaded == and ! = provide for the comparison of types. The before() function returns
true if the invoking object is before the object used as a parameter in collation order. (This
function is mostly for internal use only. Its return value has nothing to do with inheritance or
class hierarchies.) The name() function returns a pointer to the name of the type.
While typeid will obtain the type of any object, its most important use is its application
through a pointer of a polymorphic base class. In this case, it will automatically return the
type of the actual object being pointed to, which can be a base class object or an object derived
from that base. (Remember, a base class pointer can point to an object of the base class or of
any class derived from that base.) Thus, using typeid you can determine at run time the type
of the object that is being pointed to by a base class pointer. The same applies to references.
When typeid is applied to a reference to an object of a polymorphic class, it will return the
type of the object actually being referred to, which can be of a derived type. When typeid is
applied to a non-polymorphic class, the base type of the pointer or reference is obtained.
There is a second form of typeid, one that takes a type name as its argument. This form is
shown here:

typeid(type_name)

The main use of this form of typeid is to obtain a type info object that describes the specified
type so that it can be used in a type comparison statement.
Because typeid is commonly applied to a dereferenced pointer (i.e., one to which the * operator
has been applied), a special exception has been created to handle the situation in which the
pointer being dereferenced is null. In this case, typeid throws a bad typeid exception.
Run-time type identification is not something that every program will use. However, when you
are working with polymorphic types, it allows you to know what type of object is being operated
upon in any given situation.

EXAMPLES

1. The following program demonstrates typeid. It first obtains type information about one
of C++’s built-in types, int. It then displays the types of objects pointed to by p, which
is a pointer of type BaseClass.

// An example that uses typeid

#include <iostream >

#include <typeinfo >

using namespace std;

class BaseClass

{

virtual void f() {} // make BaseClass polymorphic

// ...

};

class Derived1 : public BaseClass

{

// ...

};

311

TEACH YOURSELF
C++

class Derived2 : public BaseClass

{

// ...

};

int main()

{

int i;

BaseClass *p, baseob;

Derived1 ob1;

Derived2 ob2;

// First , display type name of a built -in type.

cout << "Typeid of i is ";

cout << typeid(i).name() << endl;

// Demonstrate typeid with polumorphic types.

p = &baseob;

cout << "p is pointing to an object of type ";

cout << typeid (*p).name() << endl;

p = &ob1;

cout << "p is pointing to an object of type ";

cout << typeid (*p).name() << endl;

p = &ob2;

cout << "p is pointing to an object of type ";

cout << typeid (*p).name() << endl;

return 0;

}

// output may vary depending on compiler.

The output produced by this program is shown.

Typeid of i is int

p is pointing to an object of type class BaseClass

p is pointing to an object of type class Derived1

p is pointing to an object of type class Derived2

As explained, when typeid is applied to a base class pointer of a polymorphic type, the
type of object pointed to will be determined at run time, as the output produced by the
program shows. As an experiment, comment out the virtual function f() in BaseClass
and observe the results.

2. As explained, when typeid is applied to a reference to a polymorphic base class, the
type returned is that of the actual object being referred to. The circumstances in which
you will most often make use of this feature is when objects are passed to functions by
reference. For example, in the following program, the function WhatType() declares a
reference parameter to objects of type BaseClass. This means that parameter to objects
of type BaseClass. This means that WhatType() can be passed references to objects

312

RUN-TIME TYPE IDENTIFICATION AND THE CASTING OPERATORS
12.1. UNDERSTANDING RUN-TIME TYPE IDENTIFICATION (RTTI)

of type BaseClass or any class derived from BaseClass. When the typeid operator is
applied to this parameter, it returns the actual type of the object being passed.

// Use a reference with typeid

#include <iostream >

#include <typeinfo >

using namespace std;

class BaseClass

{

virtual void f() {} // make BaseClass polymorphic

// ...

};

class Derived1 : public BaseClass

{

// ...

};

class Derived2 : public BaseClass

{

// ...

};

// Demonstrate typeid with a reference parameter.

void WhatType(BaseClass &ob)

{

cout << "ob is referencing an object of type ";

cout << typeid(ob).name() << endl;

}

int main()

{

BaseClass baseob;

Derived1 ob1;

Derived2 ob2;

WhatType(baseob);

WhatType(ob1);

WhatType(ob2);

return 0;

}

The output produced by this program is shown here.

ob is pointing to an object of type class BaseClass

ob is pointing to an object of type class Derived1

ob is pointing to an object of type class Derived2

3. Although obtaining the type name of an object is useful in some circumstances often all
you need to know is whether the type of one object matches that of another. Since the

313

TEACH YOURSELF
C++

type info object returned by typeid overloads the == and ! = operators, this too is
easy to accomplish. The following program demonstrates the use of these operators.

// Demonstrate == and != relative to typeid.

#include <iostream >

#include <typeinfo >

using namespace std;

class X

{

virtual void f() {}

};

class Y

{

virtual void f() {}

};

int main()

{

X x1, x2;

Y y1;

if(typeid(x1) == typeid(x2))

cout << "x1 and x2 are same types\n";

else

cout << "x1 and x2 are different types\n";

if(typeid(x1) != typeid(y1))

cout << "x1 and y1 are different types\n";

else

cout << "x1 and y1 are same types\n";

return 0;

}

The program displays the following output.

x1 and x2 are same types

x1 and y1 are different types

4. Although the preceding examples demonstrate the mechanics of using typeid, they don’t
show its full potential because the types in the preceding programs are knowable at compile
time. In the following program this is not the case. The program defines a simple class
hierarchy that draws shapes on the screen. At the top of the hierarchy is the abstract
class Shape. Four concrete subclasses are created: Line, Square, Rectangle, and
NullShape. The function generator() generates an object and returns a pointer to
it. The actual object created is determined randomly based upon the outcome of the
random number generator rand(). (A function that produces objects is sometimes called
an object factory.) Inside main(), the shape of each object is displayed for all objects but
NullShape objects, which have no shape. Since objects are generated randomly, there
is no way to know in advance what type of object will be created next. Thus, the use of
RTTI is required.

314

RUN-TIME TYPE IDENTIFICATION AND THE CASTING OPERATORS
12.1. UNDERSTANDING RUN-TIME TYPE IDENTIFICATION (RTTI)

#include <iostream >

#include <cstdlib >

#include <typeinfo >

using namespace std;

class Shape

{

public:

virtual void example () = 0;

};

class Rectangle : public Shape

{

public:

void example ()

{

cout << "*****\n* *\n* *\n*****\n";

}

};

class Triangle : public Shape

{

public:

void example ()

{

cout << "*\n* *\n* *\n*****\n";

}

};

class Line : public Shape

{

public:

void example ()

{

cout << "*****\n";

}

};

class NullShape : public Shape

{

public:

void example ()

{

}

};

// A factory for objects derived from Shape.

Shape *generator ()

{

switch(rand() % 4)

315

TEACH YOURSELF
C++

{

case 0:

return new Line;

case 1:

return new Rectangle;

case 2:

return new Triangle;

case 3:

return new NullShape;

}

return NULL;

}

int main()

{

int i;

Shape *p;

for(i=0; i<10; i++)

{

p = generator (); // get next object

cout << "class " << typeid (*p).name() << endl;

// draw object only if it is not a NullShape

if(typeid (*p) != typeid(NullShape))

p->example ();

}

return 0;

}

Sample output from the program is shown here.

class Rectangle

* *

* *

class NullShape

class Triangle

*

* *

* *

class Line

class Rectangle

316

RUN-TIME TYPE IDENTIFICATION AND THE CASTING OPERATORS
12.1. UNDERSTANDING RUN-TIME TYPE IDENTIFICATION (RTTI)

* *

* *

class Line

class Triangle

*

* *

* *

class Triangle

*

* *

* *

class Triangle

*

* *

* *

class Line

5. The typeid operator can be applied to template classes. For example, consider the
following program. It creates a hierarchy of template classes that store a value. The
virtual function get val() returns a value that is defined by each class. For class Num,
this is the value of the number itself. For Square, it is the square of the number, and for
Sqr root, it is the square root of the number. Objects derived from Num are generated
by the generator() function. The typeid operator is used to determine what type of
object has been generated.

// typeid can be used with templates.

#include <iostream >

#include <typeinfo >

#include <cmath >

#include <cstdlib >

using namespace std;

template <class T> class Num

{

public:

T x;

Num(T i) { x = i; }

virtual T get_val () { return x; }

317

TEACH YOURSELF
C++

};

template <class T>

class Square : public Num <T>

{

public:

Square(T i) : Num <T>(i) {}

T get_val () { return this ->x*this ->x; }

};

template <class T>

class Sqr_root : public Num <T>

{

public:

Sqr_root(T i) : Num <T>(i) {}

T get_val () { return sqrt((double) this ->x); }

};

// A factory for objects derived from Num.

Num <double > *generator ()

{

switch(rand() % 2)

{

case 0:

return new Square <double > (rand() % 100);

case 1:

return new Sqr_root <double > (rand() % 100);

}

return NULL;

}

int main()

{

Num <double > ob1 (10), *p1;

Square <double > ob2 (100.0);

Sqr_root <double > ob3 (999.2);

int i;

cout << typeid(ob1).name() << endl;

cout << typeid(ob2).name() << endl;

cout << typeid(ob3).name() << endl;

if(typeid(ob2) == typeid(Square <double >))

cout << "is Square <double >\n";

p1 = &ob2;

if(typeid (*p1) != typeid(ob1))

cout << "Value is: " << p1 ->get_val ();

cout << "\n\n";

318

RUN-TIME TYPE IDENTIFICATION AND THE CASTING OPERATORS
12.1. UNDERSTANDING RUN-TIME TYPE IDENTIFICATION (RTTI)

cout << "Now , generate some Objects .\n";

for(i=0; i<10; i++)

{

p1 = generator (); // get next object

if(typeid (*p1) == typeid(Square <double >))

cout << "Square object: ";

if(typeid (*p1) == typeid(Sqr_root <double >))

cout << "Sqr_root object: ";

cout << "Value is: " << p1 ->get_val ();

cout << endl;

}

return 0;

}

/*

The example shown in main book will not compile.

Reason: https :// goo.gl/s0cazE

Remedy: https :// goo.gl/6 lw2sJ

*/

The output from the program is shown here.

class Num<double>

class Square<double>

class Sqr root<double>

is Square<double>

Value is: 10000

Now, generate some Objects.

Sqr root object: Value is: 8.18535

Square object: Value is: 0

Sqr root object: Value is: 4.89898

Square object: Value is: 3364

Square object: Value is: 4096

Sqr root object: Value is: 6.7082

Sqr root object: Value is: 5.19615

Sqr root object: Value is: 9.53939

Sqr root object: Value is: 6.48074

Sqr root object: Value is: 6

319

TEACH YOURSELF
C++

EXERCISES

1. Why is RTTI a necessary feature of C++?

2. Try the experiment described in Example 1. What output do you see?

3. Is the following fragment correct?

cout << typeid(float).name();

4. Given this fragment, show how to determine whether p is pointing to a D2 object.

class B

{

virtual void f() {}

};

class D1 : public B

{

void f() {}

};

class D2 : public B

{

void f() {}

};

int main()

{

B *p;

5. Assuming the Num class from Example 5, is the following expression true or false?

typeid(Num <int <) == typeid(Num <double >)

6. On your own, experiment with RTTI. Although its use might seem a bit esoteric in the
context of simple, sample programs, it is a powerful construct that allows you to manage
objects at run time.

12.2 USING dynamic cast

Although C++ still fully supports the traditional casting operator defined by C, C++ adds
four new ones. They are dynamic cast, const cast, reinterpret cast, and static cast. We
will examine dynamic cast first because it relates to RTTI. The other casting operators are
examined in the following section.
The dynamic cast operator performs a run-time cast that verifies the validity of a vast. If,
at the time dynamic cast is executed, the cast is invalid, the cast fails. The general form of
dynamic cast is shown here:

dynamic_cast <target_type > (expr)

Here target-type specifies the target type of the cast and expr is the expression being cast into
the new type. The target type must be a pointer or reference type, and the expression being
cast must evaluate to a pointer or reference. Thus, dynamic cast can be used to cast one type
of pointer into another or one type of reference into another.

320

RUN-TIME TYPE IDENTIFICATION AND THE CASTING OPERATORS
12.2. USING dynamic cast

The purpose of dynamic cast is to perform casts on polymorphic types. For example, given
the two polymorphic classes B and D, with D derived from B, a dynamic cast can always
cast a D* pointer into a B* pointer. This is because a base pointer can always point to a
derived object. But a dynamic cast can cast a B* pointer into a D* pointer only if the
object being pointed to actually is a D object. In general, dynamic cast will succeed if the
pointer (or reference) being cast is a pointer (or reference) to either an object of the target
type or an object derived from the target type. Otherwise, the cast will fail. If the cast fails,
dynamic cast evaluates to null if the cast involves pointers. If a dynamic cast on reference
types fails, a bad cast exception is thrown.
Here is a simple example. Assume that Base is a polymorphic class and that Derived is
derived from Base.

Base *bp , b_ob;

Derived *dp , d_ob;

bp = &d_ob; // base pointer points to Derived object

dp = dynamic_cast <Derived *> (bp);

if(dp)

cout << "Cast OK";

Here the cast from the base pointer bp to the derived pointer dp works because bp is actually
pointing to a Derived object. Thus, this fragment displays Cast OK. But in the next fragment,
the cast fails because bp is pointing to a Base object an it is illegal to cast a base object into
a derived object.

bp = &b_ob; // base pointer points to Base object

dp = dynamic_cast <Derived *> (bp);

if(!dp)

cout << "Cast Fails";

Because the cast fails, this fragment displays Cast Fails.
The dynamic cast operator can sometimes be used instead of typeid in certain cases. For
example, again assume that Base is a polymorphic base class for Derived. The following
fragment will assign dp the address of the object pointed to by bp if and only if the object is
really a Derived object.

Base *bp;

Derived *dp;

// ...

if(typeid (*bp) == typeid(Derived))

dp = (Derived *) bp;

In this case, a C-style cast is used to actually perform the cast. This is safe because the if
statement checks the legality of the cast using typeid before the cast actually occurs. However,
a better way to accomplish this is to replace the typeid operators and if statement with this
dynamic cast:

dp = dynamic_cast <Derived *> (bp);

Because dynamic cast succeeds only if the object being cast is either already an object of the
target type or an object derived from the target type, after this statement executes dp will
contain either a null or a pointer to an object of type Derived. Since dynamic cast succeeds
only if the cast is legal, it can simplify the logic in certain situations.

321

TEACH YOURSELF
C++

EXAMPLES
1. The following program demonstrates dynamic cast:

// Demonstrate dynamic_cast.

#include <iostream >

using namespace std;

class Base

{

public:

virtual void f() { cout << "Inside Base\n"; }

// ...

};

class Derived : public Base

{

public:

void f() { cout << "Inside Derived\n"; }

};

int main()

{

Base *bp , b_ob;

Derived *dp , d_ob;

dp = dynamic_cast <Derived *> (&d_ob);

if(dp)

{

cout << "Cast from Derived * to Derived * OK.\n";

dp->f();

}

else

cout << "Error\n";

cout << endl;

bp = dynamic_cast <Base *> (&d_ob);

if(bp)

{

cout << "Cast from Derived * to Base * OK.\n";

bp->f();

}

else

cout << "Error\n";

cout << endl;

bp = dynamic_cast <Base *> (&b_ob);

if(bp)

{

cout << "Cast from Base * to Base * OK.\n";

bp->f();

322

RUN-TIME TYPE IDENTIFICATION AND THE CASTING OPERATORS
12.2. USING dynamic cast

}

else

cout << "Error\n";

cout << endl;

dp = dynamic_cast <Derived *> (&b_ob);

if(dp)

cout << "Error\n";

else

cout << "Cast from Base * to Derived * not OK.\n";

cout << endl;

bp = &d_ob; // bp points to Derived object

dp = dynamic_cast <Derived *> (bp);

if(dp)

{

cout << "Casting bp to a Derived * OK.\n" <<

"because bp is really pointing\n" <<

"to a Derived object .\n";

dp->f();

}

else

cout << "Error\n";

cout << endl;

bp = &b_ob; // bp points to Base object

dp = dynamic_cast <Derived *> (bp);

if(dp)

cout << "Error\n";

else

{

cout << "Now casting bp to a Derived *\n" <<

"is not OK because bp is really\n" <<

"pointing to a Base object .\n";

}

cout << endl;

dp = &d_ob; // dp points to Derived object

bp = dynamic_cast <Base *> (dp);

if(bp)

{

cout << "Casting dp to a Base * is OK.\n";

bp->f();

}

else

cout << "Error\n";

323

TEACH YOURSELF
C++

return 0;

}

The program produces the following output.

Cast from Derived * to Derived * OK.

Inside Derived

Cast from Derived * to Base * OK.

Inside Derived

Cast from Base * to Base * OK.

Inside Base

Cast from Base * to Derived * not OK.

Casting bp to a Derived * OK.

because bp is really pointing

to a Derived object.

Inside Derived

Now casting bp to a Derived *

is not OK because bp is really

pointing to a Base object.

Casting dp to a Base * is OK.

Inside Derived

2. The following example illustrates how a dynamic cast can be used to replace typeid.

// Use dynamic_cast to replace typeid.

#include <iostream >

#include <typeinfo >

using namespace std;

class Base

{

public:

virtual void f() {}

};

class Derived : public Base

{

public:

void derivedOnly ()

{

cout << "Is a Derived Object\n";

}

324

RUN-TIME TYPE IDENTIFICATION AND THE CASTING OPERATORS
12.2. USING dynamic cast

};

int main()

{

Base *bp , b_ob;

Derived *dp , d_ob;

// ***********************************

// use typeid

// ***********************************

bp = &b_ob;

if(typeid (*bp) == typeid(Derived))

{

dp = (Derived *) bp;

dp->derivedOnly ();

}

else

cout << "Cast from Base to Derived failed .\n";

bp = &d_ob;

if(typeid (*bp) == typeid(Derived))

{

dp = (Derived *) bp;

dp->derivedOnly ();

}

else

cout << "Error , cast should work!\n";

// ***********************************

// use dynamic_cast

// ***********************************

bp = &b_ob;

dp = dynamic_cast <Derived *> (bp);

if(dp)

dp->derivedOnly ();

else

cout << "Cast from Base to Derived failed .\n";

bp = &d_ob;

dp = dynamic_cast <Derived *> (bp);

if(dp)

dp->derivedOnly ();

else

cout << "Error , cast should work!\n";

return 0;

}

As you can see, the use of dynamic cast simplifies the logic required to cast a base
pointer into a derived pointer. The output from the program is shown here.

Cast from Base to Derived failed.

Is a Derived Object

325

TEACH YOURSELF
C++

Cast from Base to Derived failed.

Is a Derived Object

3. The dynamic cast operator can also be used with template classes. For example, the
following program reworks the template class from Example 5 in the preceding section so
that it uses dynamic cast to determine the type of object returned by the generator()
function.

// dynamic_cast can be used with templates , too.

#include <iostream >

#include <typeinfo >

#include <cmath >

#include <cstdlib >

using namespace std;

template <class T> class Num

{

public:

T x;

Num(T i) { x = i; }

virtual T get_val () { return x; }

};

template <class T>

class Square : public Num <T>

{

public:

Square(T i) : Num <T>(i) {}

T get_val () { return this ->x*this ->x; }

};

template <class T>

class Sqr_root : public Num <T>

{

public:

Sqr_root(T i) : Num <T>(i) {}

T get_val () { return sqrt((double) this ->x); }

};

// A factory for objects derived from Num.

Num <double > *generator ()

{

switch(rand() % 2)

{

case 0:

return new Square <double > (rand() % 100);

case 1:

return new Sqr_root <double > (rand() % 100);

}

return NULL;

}

326

RUN-TIME TYPE IDENTIFICATION AND THE CASTING OPERATORS
12.2. USING dynamic cast

int main()

{

Num <double > ob1 (10), *p1;

Square <double > ob2 (100.0) , *p2;

Sqr_root <double > ob3 (999.2) , *p3;

int i;

cout << "Generate some objects .\n";

for(i=0; i<10; i++)

{

p1 = generator ();

p2 = dynamic_cast <Square <double > *> (p1);

if(p2)

cout << "Square object: ";

p3 = dynamic_cast <Sqr_root <double > *> (p1);

if(p3)

cout << "Sqr_root object: ";

cout << "Value is: " << p1 ->get_val ();

cout << endl;

}

return 0;

}

EXERCISES

1. In your own words explain the purpose of dynamic cast.

2. Given the following fragment and using dynamic cast, show how you can assign p a
pointer to some object ob if and only if ob is a D2 object.

class B

{

virtual void f() {}

};

class D1 : public B

{

void f() {}

};

class D2 : public B

{

void f() {}

};

B *p;

3. Convert the main() function in Section 12.1, Example 4, so that it uses dynamic cast
rather than typeid to prevent a NullShape object from being displayed.

327

TEACH YOURSELF
C++

4. Using the Num class hierarchy from Example 3 in this section, will the following work?

Num <int > *Bp;

Square <double > *Dp;

// ...

Dp = dynamic_cast <Num <int >> (Bp);

12.3 USING const cast, reinterpret cast, AND static cast

Although dynamic cast is the most important of the new casting operators, the other three
are also valuable to the programmer. Their general forms are shown here:

const_cast <target_type > (expr)

reinterpret_cast <target_type > (expr)

static_cast <target_type > (expr)

Here target-type specifies the target type of the cast and expr is the expression being cast
into the new type. In general, these casting operators provide a safer, more explicit means of
performing certain type conversions than that provided by the C-style cast.

The const cast operator is used to explicitly override const and/or volatile in a cast. The
target type must be the same as the source type except for the alteration of its const or volatile
attributes. The most common use of const cast is to remove const-ness.

The static cast operator performs a non-polymorphic cast. For example, it can be used to cast
a base class pointer into a derived class pointer. It can also be used for any standard conversion.
No run-time checks are performed.

The reinterpret cast operator changes one pointer type into another, fundamentally different,
pointer type. It can also change a pointer into an integer and an integer into a pointer. A
reinterpret cast should be used for casting inherently incompatible pointer types.

Only const cast can cast away const-ness. That is, neither dynamic cast, static cast, nor
reinterpret cast can alter the const-ness of an object.

EXAMPLES

1. The following program demonstrates the use of reinterpret cast.

// An example that uses reinterpret_cast.

#include <iostream >

using namespace std;

int main()

{

int i;

char *p = "This is a string";

i = reinterpret_cast <int > (p); // cast pointer to integer

cout << i;

return 0;

}

Here reinterpret cast converts the pointer p into an integer. This conversion represents
a fundamental type change and is a good use of reinterpret cast.

328

RUN-TIME TYPE IDENTIFICATION AND THE CASTING OPERATORS
12.3. USING const cast, reinterpret cast, AND static cast

2. The following program demonstrates const cast.

// Demonstrate const_cast

#include <iostream >

using namespace std;

void f(const int *p)

{

int *v;

// cast away const -ness

v = const_cast <int *> (p);

*v = 100; // now , modify object through v

}

int main()

{

int x = 99;

cout << "x before call: " << x << endl;

f(&x);

cout << "x after call: " << x << endl;

return 0;

}

The output produced by this program is shown here.

x before call: 99

x after call: 100

As you can see, x was modified by f() even though the parameter to f() was specified as
a const pointer.

It must be stressed that the use of const cast to cast way const-ness is a potentially
dangerous feature. Use it with care.

3. The static cast operator is essentially a substitute for the original cast operator. It
simply performs a non-polymorphic cast. For example, the following casts a float into an
int.

// use static_cast

#include <iostream >

using namespace std;

int main()

{

int i;

float f;

f = 199.22;

i = static_cast <int > (f);

329

TEACH YOURSELF
C++

cout << i;

return 0;

}

EXERCISES

1. Explain the rationale for const cast, reinterpret cast, and static cast.

2. The following program contains an error. Show how to fix it using a const cast.

#include <iostream >

using namespace std;

void f(const double &i)

{

i = 100; // Error -- fix using const_cast

}

int main()

{

double x = 98.6;

cout << x << endl;

f(x);

cout << x << endl;

return 0;

}

3. Explain why const cast should normally be reserved for special cases.

SKILLS CHECK

Mastery Skills Check

At this point you should be able to perform the following exercises and answer the questions.

1. Describe the operation of typeid.

2. What header must you include in order to use typeid?

3. In addition to the standard cast, C++ defines four casting operators. What are they and
what are they for?

4. Complete the following partial program so that it reports which type of object has been
selected by the user.

#include <iostream >

#include <typeinfo >

using namespace std;

class A

330

RUN-TIME TYPE IDENTIFICATION AND THE CASTING OPERATORS
SKILLS CHECK

{

virtual void f() {}

};

class B : public A

{

};

int main()

{

A *p, a_ob;

B b_ob;

C c_ob;

int i;

cout << "Enter 0 for A objects , ";

cout << "1 for B objects or ";

cout << "2 for C objects .\n";

cin >> i;

if(i==1)

p = &b-Ob;

else if(i==2)

p = &c_ob;

else

p = &a_ob;

// report type of object selected by user

return 0;

}

5. Explain how dynamic cast can sometimes be an alternative to typeid.

6. What type of object is obtained by the typeid operator?

Cumulative Skills Check

This section checks how well you have integrated material in this chapter with that from the
preceding chapter.

1. Rework the program in Section 12.1, Example 4 so that it uses exception handling to
watch for an allocation failure within the generator() function.

2. Change the generator() function from Question 1 so that it uses the nothrow version
of new. Be sure to check for errors.

3. Special Challenge: On your own, create a class hierarchy that has at its top an abstract
class called DataStruct. Create two concrete subclasses. Have one implement a stack, the
other a queue. Create a function called DataStructFactory() that has this prototype.

DataStruct *DataStructFactory(char what);

331

TEACH YOURSELF
C++

Have DataStructFactory() create a stack if what is s and a queue if what is q. Return
a pointer to the object created. Demonstrate that your factory function works.

332

13
Namespaces, Conversion

Functions, and Miscellaneous
Topics

Chapter Objectives

13.1 Namespaces

13.2 Creating a conversion function

13.3 static class members

13.4 const member functions and mutable

13.5 A final look at constructors

13.6 Using linkage specifiers and the asm keyword

2.7 Array-based I/O

333

TEACH YOURSELF
C++

This chapter discusses namespaces, conversion functions, static and const class members,
and other specialized features of C++.

Review Skills Check

Before proceeding, you should be able to correctly answer the following questions and do the
exercises.

1. What are the casting operators and what do they do?

2. What is type info?

3. What operator determines the type of an object?

4. Given this fragment, show how to determine whether p points to an object of Base or an
object of Derived.

class Base

{

virtual void f() {}

};

class Derived : public Base

{

};

int main()

{

Base *p, b_ob;

Derived d_ob;

// ...

5. A dynamic cast succeeds only if the object being cast is a pointer to either an object of
the target type or an object from the target type. (Fill in the blank.)

6. Can a dynamic cast cast away const-ness?

13.1 NAMESPACES

Namespaces were briefly introduced in Chapter 1. Now it is time to look at them in detail.
Namespaces are a relatively recent addition to C++. Their purpose is to localize the names
of identifiers to avoid name collisions. In the C++ programming environment, there has been
an explosion of variable,function, and class names. Prior to the invention of namespaces, all of
these names competed for slots in the global namespace, and many conflicts arose. For example,
if your program defined a function called toupper(), it could (depending upon its parameter
list) override the standard library function toupper() because both names would be stored in
the global namespace. Name collisions were compounded when two or more third-party libraries
were used by the same program. In this case, it was possible-even likely-that a name defined
by one library would conflict with the same name defined by another library.

The creation of the namespace keyword was a response to these problems. Because it localizes
the visibility of names declared within it, a namespace allows the same name to be used in

334

NAMESPACES, CONVERSION FUNCTIONS, AND MISCELLANEOUS TOPICS

13.1. NAMESPACES

different contexts without giving rise to conflicts. Perhaps the most noticeable beneficiary of
namespaces is the C++ standard library. In early versions of C++, the entire C++ library
was defined within the global namespace (which was, of course, the only namespace). Now,
however, the C++ library is defined within its own namespace std, which reduces the chance
of name collisions. You can also create your own namespaces within your program to localize
the visibility of any names that you think might cause conflicts. This is especially important if
you are creating class or function libraries.

The namespace keyword allows you to partition the global namespace by creating a declarative
region. In essence, a namespace defines a scope. The general form of namespace is shown
here:

namespace name

{

// declarations

}

Anything defined within a namespace statement is within the scope of that namespace.

Here is an example of a namespace:

namespace MyNameSpace

{

int i, k;

void myfunc(int j) { cout << j; }

class myclass

{

public:

void seti(int x) { i = x; }

int geti() { return i; }

};

}

Here i, k, mufunc(), and the class myclass are part of the scope defined by the MyNameS-
pace namespace.

Identifiers declared within a namespace can be referred to directly within that namespace. For
example, in MyNameSpace the return i statement uses i directly. However, since names-
pace defines a scope, you need to use the scope resolution operator to refer to objects declared
within a namespace from outside that namespace. For example, to assign the value 10 to i from
code outside MyNameSpace, you must use this statement:

MyNameSpace ::i = 10;

Or, to declare an object of type myclass from outside MyNameSpace, you use a statement
like this:

MyNameSpace :: myclass ob;

In general, to access a member of a namespace from outside its namespace, precede the member’s
name with the name of the namespace followed by the scope resolution operator.

As you can imagine, if your program includes frequent references to the members of a namespace,
the need to specify the namespace and the scope resolution operator each time you need to refer
to one quickly becomes a tedious chore. The using statement was invented to alleviate this
problem. The using statement has these two general forms:

using namespace name;

using name:: member;

335

TEACH YOURSELF
C++

In the first form, name specifies the name of the namespace you want to access. When you
use this form, all of the members defined within the specified namespace are brought into the
current namespace and can be used without qualification. If you use the second form, only a
specific member of the namespace is made visible. For example, assuming MyNameSpace as
shown above, the following using statements and assignments are valid:

using MyNameSpace ::k; // only k is made visible

k = 10; // OK because k is visible

using namespace MyNameSpace; // all members are visible

i = 10; // OK because all members of MyNameSpace are visible

There can be more than one namespace declaration of the same name. This allows a namespace
to be split over several files or even separated within the same file. Consider the following
example:

namespace NS

{

int i;

}

// ...

namespace NS

{

int j;

}

Here NS is split into two pieces. However, the contents of each piece are still within the same
namespace, NS.
A namespace must be declared outside of all other scopes, with one exception: a namespace can
be nested within another. This means that you cannot declare namespaces that are localized
to a function, for example.
There is a special type of namespace, called an unnamed namespace, that allows you to create
identifiers that are unique within a file. It has this general form:

namespace

{

// declarations

}

Unnamed namespaces allow you to establish unique identifiers that are known only within the
scope of a single file. That is, within the file that contains the unnamed namespace, the members
of that namespace can be used directly, without qualification. But outside the file, the identifiers
are unknown.
You will not usually need to create namespaces for most small-to medium-sized programs.
However, if you will be creating libraries of reusable code or if you want to ensure the widest
portability, consider wrapping your code within a namespace.

EXAMPLES

1. Here is an example that illustrates the attributes of a namespace.

// Namespace Demo

#include <iostream >

using namespace std;

336

NAMESPACES, CONVERSION FUNCTIONS, AND MISCELLANEOUS TOPICS

13.1. NAMESPACES

// define a namespace

namespace firstNS

{

class demo

{

int i;

public:

demo(int x) { i = x; }

void seti(int x) { i = x; }

int geti() { return i; }

};

char str[] = "Illustrating namespaces\n";

int counter;

}

// define another namespace

namespace secondNS

{

int x, y;

}

int main()

{

// use scope resolution

firstNS ::demo ob(10);

/*

Once ob has been declared , its member functions

can be used without namespace qualification ,

*/

cout << "Value of ob is: " << ob.geti();

cout << endl;

ob.seti (99);

cout << "Value of ob is now : " << ob.geti();

cout << endl;

// bring str into current scope

using firstNS ::str;

cout << str;

// bring all of firstNS into current scope

using namespace firstNS;

for(counter = 10; counter; counter --)

cout << counter << " ";

cout << endl;

// use secondNS namespace

secondNS ::x = 10;

secondNS ::y = 20;

337

TEACH YOURSELF
C++

cout << "x y: " << secondNS ::x;

cout << ", " << secondNS ::y << endl;

// bring another namespace into view

using namespace secondNS;

demo xob(x), yob(y);

cout << "xob , yob: " << xob.geti() << ", ";

cout << yob.geti() << endl;

return 0;

}

The output produced by this program is shown here.

Value of ob is : 10

Value of ob is now : 99

Illustrating namespaces

10 9 8 7 6 5 4 3 2 1

x, y: 10, 20

xob, yob: 10, 20

The program illustrates one important point: using one namespace does not override
another. When you bring a namespace into view, it simply adds its names to whatever
other namespaces are currently in effect. Thus, by the end of this program the std,
firstNS, and secondNS namespaces have been added to the global namespace.

2. As mentioned, a namespace can be split between files or within a single file; its contents
are additive. Consider this example:

// Namespaces are additive

#include <iostream >

using namespace std;

namespace Demo

{

int a; // In Demo namespace

}

int x; // this is in global namespace

namespace Demo

{

int b; // this is in Demo namespace , too

}

int main()

{

using namespace Demo;

a = b = x = 100;

338

NAMESPACES, CONVERSION FUNCTIONS, AND MISCELLANEOUS TOPICS

13.1. NAMESPACES

cout << a << " " << b << " " << x;

return 0;

}

Here the Demo namespace contains both a and b, but not x.

3. As explained, Standard C++ defines its entire library in its own namespace, std. This is
the reason that most of the programs in this book have included the following statement:

using namespace std;

This causes the std namespace to be brought into the current namespace, which gives you
direct access to the names of the functions and classes defined within the library without
having to qualify each one with std::.

Of course, you can explicitly qualify each name with std:: if you like. For example, the
following program does not bring the library into the global namespace.

// use explicit std:: qualification.

#include <iostream >

int main()

{

double val;

std::cout << "Enter a number: ";

std::cin >> val;

std::cout << "This is your number: ";

std::cout << val;

return 0;

}

Here cout and cin are both explicitly qualified by their namespace. That is, to write a
standard output you must specify std::cout, and to read from standard input you must
use std::cin.

You might not want to bring the Standard C++ library into the global namespace if
your program will be making only limited use of it. However, if your program contains
hundreds of references to library names, including std in the current namespace is far
easier than qualifying each name individually.

4. If you are using only a few names form the standard library, it might make more sense to
specify a using statement for each individually. The advantage to this approach is that
you can still use those names without an std:: qualification but you will not be bringing
the entire standard library into the global namespace. Here’s an example:

// Bring only a few names into the global namespace.

#include <iostream >

// gain access to cout and cin

using std::cout;

using std::cin;

339

TEACH YOURSELF
C++

int main()

{

double val;

cout << "Enter a number: ";

cin >> val;

cout << "This is your number: ";

cout << val;

return 0;

}

Here cin and cout can be used directly, but the rest of the std namespace has not been
brought into view.

5. As explained, the original C++ library was defined in the global namespace. If you will
be converting older C++ programs, you will need to either include a using namespace
std statement or qualify each reference to a library member with std::. This is especially
important if you are replacing old .h header files with the new-style headers. Remember,
the old .h headers put their contents into the global namespace. The new-style headers
put their contents into the std namespace.

6. In C, if you want to restrict the scope of a global name to the file in which it is declared,
you declare that name as static. For example, consider the following two files that are
part of the same program:

File One File Two

static int counter;

void f1()

{

counter = 99; // OK

}

extern int counter;

void f2()

{

counter = 10; // error

}

Because counter is defined in File One, it can be used in File One. In File Two, even
though counter is specified as extern, it is still unavailable, and any attempt to use it
results in an error. By preceding counter with static in File One, the programmer has
restricted its scope to that file.

Although the use of static global declarations is still allowed in C++, a better way to
accomplish the same end is to use an unnamed namespace, as shown in this example:

340

NAMESPACES, CONVERSION FUNCTIONS, AND MISCELLANEOUS TOPICS

13.1. NAMESPACES

File One File Two

namespace

{

int counter;

}

void f1()

{

counter = 99; // OK

}

extern int counter;

void f2()

{

counter = 10; // error

}

Here counter is also restricted to File One. The use of the unnamed namespace rather
than static is the method recommended by Standard C++.

EXERCISES

1. Convert the following program from Chapter 9 so that it does not use the using names-
pace std statement.

// Convert spaces to |s.

#include <iostream >

#include <fstream >

using namespace std;

int main(int argc , char *argv [])

{

if(argc !=3)

{

cout << "Usage: CONVERT <input > <output >\n";

return 1;

}

ifstream fin(argv [1]); // open input file

ofstream fout(argv [2]); // create output file

if(!fout)

{

cout << "Cannot open output file.\n";

return 1;

}

if(!fin)

{

cout << "Cannot open input file.\n";

return 1;

}

char ch;

fin.unsetf(ios:: skipws); // do not skip spaces

341

TEACH YOURSELF
C++

while (!fin.eof())

{

fin >> ch;

if(ch==’ ’)

ch = ’|’;

if(!fin.eof())

fout << ch;

}

fin.close();

fout.close();

return 0;

}

2. Explain the operation of an unnamed namespace.

3. Explain the difference between the two forms of using.

4. Explain why most programs in this book contain a using statement. Describe one alter-
native.

5. Explain why you might want to put reusable code that you create into its own namespace.

13.2 CREATING A CONVERSION FUNCTION

Sometimes it is useful to convert an object of one type into an object of another. Although
it is possible to use an overloaded operator function to accomplish such a conversion, there is
often an easier (and better) way: using a conversion function. A conversion function converts
an object into a value compatible with another type, which is often one of the built-in C++
types. In essence, a conversion function automatically converts an object into a value that is
compatible with the type of the expression in which the object is used.
The general form of a conversion function is shown here:

operator typr(){ return value; }

Here type is the target type you will be converting to and value is the value of the object
after the conversion ha been performed. Conversion functions return a value of type type. No
parameters can be specified, and a conversion function must be a member of the class for which
it performs the conversion.
As the example will illustrate, a conversion function generally provides a cleaner approach to
converting an object’s value into another type than any other method available in C++ because
it allows an object to be included directly in an expression involving the target type.

EXAMPLES

1. In the following program, the coord class contains a conversion function that converts an
object to an integer. In this case, the function returns the produce of the two coordinates;
however, any conversion appropriate to your specific application is allowed.

// A simple conversion function example.

#include <iostream >

using namespace std;

342

NAMESPACES, CONVERSION FUNCTIONS, AND MISCELLANEOUS TOPICS

13.2. CREATING A CONVERSION FUNCTION

class coord

{

int x, y;

public:

coord(int i, int j) { x = i; y = j; }

operator int() { return x*y; } // conversion function

};

int main()

{

coord o1(2, 3), o2(4, 3);

int i;

i = o1; // automatically convert to integer

cout << i << ’\n’;

i = 100 + o2; // convert o2 to integer

cout << i << ’\n’;

return 0;

}

This program displays 6 and 112.

In this example, notice that the conversion function is called when o1 is assigned to an
integer and when o2 is used as part of a larger integer expression. As stated, by using a
conversion function, you allow classes that you create to be integrated into ”normal” C++
expressions without having to create a series of complex overloaded operator functions.

2. Following is another example of a conversion function. This one converts a string of type
strtype into a character pointer to str.

#include <iostream >

#include <cstring >

using namespace std;

class strtype

{

char str [80];

int len;

public:

strtype(char *s) { strcpy(str , s); len = strlen(s); }

operator char *() { return str; } // convert to char *

};

int main()

{

strtype s("This is a test");

char *p, s2 [80];

p = s; // convert to char *

cout << "Here is string: " << p << ’\n’;

343

TEACH YOURSELF
C++

// convert to char * in function call

strcpy(s2, s);

cout << "Here is copy of string: " << s2 << ’\n’;

return 0;

}

This program displays the following:

Here is string: This is a test

Here is copy of string: This is a test

As you can see, not only is the conversion function invoked when object s is assigned to p
(which is of type char *), but ut us also called when s is used as a parameter to strcpy().
Remember, strcpy() has the following prototype:

char *strcpy(char *s1 , const char *s2);

Because the prototype specifies that s2 is of type char *, the conversion function to char
* is automatically called. This illustrates how a conversion function can also help you to
seamlessly integrate your classes into C++’s standard library functions.

EXERCISES

1. Using the strtype class from Example 2, create a conversion that converts to type int. In
this conversion, return the length of the string held in str. Illustrate that your conversion
function works.

2. Given this class,

class pwr

{

int base;

int exp;

public:

pwr(int b, int e) { base = b; exp = e; }

// create conversion to integer here

};

create a conversion function that converts an object of type pwr to type integer. Have
the function return the result of baseexp.

13.3 STATIC CLASS MEMBERS

It is possible for a class member variable to be declared as static. By using static member
variables, you can bypass a number of rather tricky problems. When you declare a member
variable as static, you cause only one copy of that variable to exist-no matter how many objects
of that class are created. Each object simply shares that one variable. Remember, for a normal
member variable, each time an object is created, a new copy of that class are created. Each
object simply shares that one variable. Remember, for a normal member variable, each time
an object is created, a new copy of that variable is created, and that copy is accessible only by
that object. (That is, when normal variables are used, each object possesses its own copies.)
However, there is only one copy of a static member variable, and all objects of its class share it.

344

NAMESPACES, CONVERSION FUNCTIONS, AND MISCELLANEOUS TOPICS

13.3. STATIC CLASS MEMBERS

Also, the same static variable will be used by any classes derived from the class that contains
the static member.

Although it might seem odd when you first think about it, a static member variable exists
before any object of its class is created. In essence, a static class member is a global variable
that simply has its scope restricted to the class in which it is declared. In fact, as you will
see in one of the following examples, it is actually possible to access a static member variable
independent of any object.

When you declare a static data member within a class, you are not defining it. Instead, you
must provide a definition for it elsewhere, outside the class. To do this, you redeclare the static
variable, using the scope resolution operator to identify which class it belongs to.

All static member variables are initialized to 0 by default. However, you can give a static class
variable an initial value of your choosing, if you like.

Keep in mind that the principal reason static member variables are supported by C++ is to
avoid the need for global variables. As you can surmise, classes that rely upon global variables
almost always violate the encapsulation principle that is so fundamental to OOP and C++.

It is also possible for a member function to be declared as static, but this usage is not common.
A member function declared as static can access only other static members of its class. (Of
course, a static member function can access non-static global data and functions.) A static
member function does not have a this pointer. Virtual static member functions are not allowed.
Also, static member functions cannot be declared as const or volatile. A static member
function can be invoked by an object of its class, or it can be called independent of any object,
via the class name and the scope resolution operator.

EXAMPLES

1. Here is a simple example that uses a static member variable:

// A static member variable example.

#include <iostream >

using namespace std;

class myclass

{

static int i;

public:

void seti(int n) { i = n; }

int geti() { return i; }

};

// Definition of myclass:i. i is still private to myclass.

int myclass ::i;

int main()

{

myclass o1 , o2;

o1.seti (10);

cout << "o1.i: " << o1.geti() << ’\n’; // displays 10

cout << "o2.i: " << o2.geti() << ’\n’; // also displays

10

345

TEACH YOURSELF
C++

return 0;

}

This program displays the following:

o1.i: 10

o2.i: 10

Looking at this program, you can see that only object o1 actually sets the value of static
member i. However, since i is shared by both o1 and o2 (and, indeed, by any object of
type myclass), both calls to geti() display the same result.

Notice how i is declared within myclass but defined outside of the class. This second
step ensures that storage for i is defined. Technically, a class declaration is just that, only
a declaration. No memory is actually set aside because of a declaration. Because a static
data member implies that memory is allocated for that member, a separate definition is
required that causes storage to be allocated.

2. Because a static member variable exists before any object of that class is created, it
can be accessed within a program independent of any object. Fro example, the following
variation of the preceding program sets the value of i to 100 without any reference to a
specific object. Notice the use of the scope resolution operator and class name to access i.

// Use a static member variable independent of any object.

#include <iostream >

using namespace std;

class myclass

{

public:

static int i;

void seti(int n) { i = n; }

int geti() { return i; }

};

int myclass ::i;

int main()

{

myclass o1 , o2;

// set i directly

myclass ::i = 100; // no object is referenced.

cout << "o1.i: " << o1.geti() << ’\n’; // displays 10

cout << "o2.i: " << o2.geti() << ’\n’; // also displays

10

return 0;

}

Because i is set to 100, the following output is displayed:

o1.i: 10

o2.i: 10

346

NAMESPACES, CONVERSION FUNCTIONS, AND MISCELLANEOUS TOPICS

13.3. STATIC CLASS MEMBERS

3. One very common use of a static class variable is to coordinate access to a shared resource,
such as a disk file, printer, or network server. As you probably know from your previous
programming experience, coordinating access to a shared resource requires some means
of sequencing events. To get an idea of how static member variables can be used to
control access to a shared resource, examine the following program. It creates a class
called output, which maintains a common output buffer called outbuf that is, itself, a
static character array. This buffer is used to receive output sent by the outbuf() member
function. This function sends the contents of str one character at a time. It does so by
first acquiring access to the buffer and then sending all the character in str. It locks out
access to the buffer by other objects until it is done outputting. You should be able to
follow its operation by studying the code and reading the comments.

// A shared resource example.

#include <iostream >

#include <cstring >

using namespace std;

class output

{

static char outbuf [255]; // this is the shared resource

static int inuse; // better available if 0;

static int oindex; // index of outbuf

char str [80];

int i; // index of next char in str

int who; // identifies the object , must be > 0

public:

output(int w, char *s) { strcpy(str , s); i = 0; who = w;

}

/*

This function returns -1 if waiting for buffer ,

it returns 0 if it is done outputting , and

it returns who if it is still using the buffer

*/

int putbuf ()

{

if(!str[i]) // done outputting

{

inuse = 0; // release buffer

return 0; // signal termination

}

if(! inuse)

inuse = who; // get buffer

if(inuse != who) // in use by someone else

return -1;

if(str[i]) // still chars to output

{

outbuf[oindex] = str[i];

i++;

oindex ++;

outbuf[oindex] = ’\0’; // always keep null -

terminated

347

TEACH YOURSELF
C++

return 1;

}

return 0;

}

void show() { cout << outbuf << ’\n’; }

};

char output :: outbuf [255]; // this is the shared resource

int output :: inuse = 0; // buffer available if 0

int output :: oindex = 0; // index of outbuf

int main()

{

output o1(1, "This is a test"), o2(2, " of statics");

while(o1.putbuf () | o2.putbuf ()); // output chars

o1.show();

return 0;

}

4. static member functions have limited applications, but one good use for them is to ”preini-
tialize” private static data before any object i s actually created. For example, this is a
perfectly valid C++ program:

#include <iostream >

using namespace std;

class static_func_demo

{

static int i;

public:

static void init(int x) { i = x; }

void show() { cout << i; }

};

int static_func_demo ::i; // define i

int main()

{

// init static data before object creation

static_func_demo ::init (100);

static_func_demo x;

x.show(); // displays 100

return 0;

}

Here i is initialized by the call to init() before an object of static func demo exists.

348

NAMESPACES, CONVERSION FUNCTIONS, AND MISCELLANEOUS TOPICS

13.4. const MEMBER FUNCTIONS AND mutable

EXERCISES

1. Rework Example 3 so that it displays which object is currently outputting characters and
which one or ones are blocked from outputting a character because the buffer is already
in use by another.

2. One interesting use of a static member variable is to keep track of the number of objects of
a class that are in existence at any given point in time. The way to do this is to increment
a static member variable each time the class’ constructor is called and decrement it each
time the class’ destructor is called. Implement such a scheme and demonstrate that it
works.

13.4 const MEMBER FUNCTIONS AND mutable

Class member functions can be declared as const. When this is done, that function cannot
modify the object that invokes it. Also, a const object cannot invoke a non-const member
function. However, a const member function can be called by either const or non-const
objects.
To specify a member function as const, use the form shown in the following example:

class X

{

int some_var;

public:

int f1() const; // const member function

};

As you can see, the const follows the function’s parameter declaration.
Sometimes there will be one or more members of a class that you want a const function to be
able to modify even though you don’t want the function to be able to modify any of its other
members. You can accomplish this through the use of mutable, which overrides const-ness.
That is, a mutable member can be modified by a const member function.

EXAMPLES

1. The purpose of declaring a member function as const is to prevent it from modifying the
object that invokes it. For example, consider the following program.

/*

Demonstrate const member functions.

This program won’t compile.

*/

#include <iostream >

using namespace std;

class Demo

{

int i;

public:

int geti() const

{

return i; // ok

}

349

TEACH YOURSELF
C++

void seti(int x) const

{

i = x; // error!

}

};

int main()

{

Demo ob;

ob.seti (1900);

cout << ob.geti();

return 0;

}

This program will not compile because seti() is declared as const. This means that it is
not allowed to modify the invoking object. Since it attempts to change i, the program is
in error. In contrast, since geti() does not attempt to modify i, it is perfectly acceptable.

2. To allow selected members to be modified by a const member function, specify them as
mutable. Here’s an example:

// Demonstrate mutable

#include <iostream >

using namespace std;

class Demo

{

mutable int i;

int j;

public:

int geti() const

{

return i; // ok

}

void seti(int x) const

{

i = x; // now , OK.

}

/*

This following function won’t compile.

void setj(int x) const

{

j = x; // Still Wrong!

}

*/

};

int main()

{

Demo ob;

350

NAMESPACES, CONVERSION FUNCTIONS, AND MISCELLANEOUS TOPICS

13.4. const MEMBER FUNCTIONS AND mutable

ob.seti (1900);

cout << ob.geti();

return 0;

}

Here i is specified as mutable, so it can be changed by the seti() function. However, j is
not mutable, so setj() is unable to modify its value.

EXERCISES

1. The following program attempts to create a simple countdown timer that rings a bell
when the time period is over. you can specify the time period and increment when a
CountDown object is created. Unfortunately, the program will not compile as shown
here. Fix it.

// This program contains an error.

#include <iostream >

using namespace std;

class CountDown

{

int incr;

int target;

int current;

public:

CountDown(int delay , int i=1)

{

target = delay;

incr = i;

current = 0;

}

bool counting () const

{

current += incr;

if(current >= target)

{

cout << "\a";

return false;

}

cout << current << " ";

return true;

}

};

int main()

{

CountDown ob(100, 2);

while(ob.counting ());

351

TEACH YOURSELF
C++

return 0;

}

2. Can a const member function call a non-const function? Why not?

13.5 A FINAL LOOK AT CONSTRUCTORS

Although constructors were described early on in this book, there are still a few points that
need to be made. Consider the following program:

#include <iostream >

using namespace std;

class myclass

{

int a;

public:

myclass(int x) { a = x; }

int geta() { return a; }

};

int main()

{

myclass ob(4);

cout << ob.geta();

return 0;

}

Here the constructor for myclass takes one parameter. Pay special attention to how ob is
declared in main(). The value 4, specified in the parentheses following ob, is the argument
that is passed to myclass()’s parameter x, which is used to initialize a. This is the form
of initialization that we have been using since the start of this book. However, there is an
alternative. For example, the following statement also initializes a to 4:

myclass ob = 4; // automatically converts into myclass (4)

As the comment suggests, this form of initialization is automatically converted into a call to
the myclass constructor with 4 as the argument. That is, the preceding statement is handled
by the compiler as if it were written like this:

myclass ob(4);

In general, any time that you have a constructor that requires only one argument, you can use
either ob(x) or ob = x to initialize an object. The reason for this is that whenever you create
a constructor that takes one argument, you are also implicitly creating a conversion from the
type of that argument to the type of the class.

If you do not want implicit conversions to be made, you can prevent them by using explicit.
The explicit specifier applies only to constructors. A constructor specified as explicit will be
used only when an initialization uses the normal constructor syntax. It will not perform any
automatic conversion. For example, if the myclass constructor is declared as explicit, the
automatic conversion will not be supplied. Here is myclass() declared as explicit:

352

NAMESPACES, CONVERSION FUNCTIONS, AND MISCELLANEOUS TOPICS

13.5. A FINAL LOOK AT CONSTRUCTORS

#include <iostream >

using namespace std;

class myclass

{

int a;

public:

explicit myclass(int x) { a = x; }

int geta() { return a; }

};

Now only constructors of the form

myclass ob (110);

will be allowed.

EXAMPLES

1. There can be more than one converting constructor in a class. For example, consider this
variation on myclass:

#include <iostream >

#include <cstdlib >

using namespace std;

class myclass

{

int a;

public:

myclass(int x) { a = x; }

myclass(char *str) { a = atoi(str); }

int geta() { return a; }

};

int main()

{

myclass ob1 = 4; // converts to myclass (4)

myclass ob2 = "123"; // converts to myclass ("123")

cout << "ob1: " << ob1.geta() << endl;

cout << "ob2: " << ob2.geta() << endl;

return 0;

}

Since both constructors use different type arguments (as, of course, they must), each
initialization statement is automatically converted into its equivalent constructor call.

2. The automatic conversion from the type of a constructor’s first argument into a call to
the constructor itself has interesting implications. For example, assuming myclass from
Example 1, the following main() function makes use of the conversions from int and char
* to assign ob1 and ob2 new values.

#include <iostream >

353

TEACH YOURSELF
C++

#include <cstdlib >

using namespace std;

class myclass

{

int a;

public:

myclass(int x) { a = x; }

myclass(char *str) { a = atoi(str); }

int geta() { return a; }

};

int main()

{

myclass ob1 = 4; // converts to myclass (4)

myclass ob2 = "123"; // converts to myclass ("123")

// use automatic conversions to assign new values

ob1 = "1776"; // converts into ob1 = myclass ("1776");

ob1 = 2001; // converts into ob1 = myclass (2001);

cout << "ob1: " << ob1.geta() << endl;

cout << "ob2: " << ob2.geta() << endl;

return 0;

}

3. To prevent the conversions just shown, you could specify the constructors as explicit, as
shown here:

#include <iostream >

#include <cstdlib >

using namespace std;

class myclass

{

int a;

public:

explicit myclass(int x) { a = x; }

explicit myclass(char *str) { a = atoi(str); }

int geta() { return a; }

};

EXERCISES

1. In Example 3, if only myyclass(int) is made explicit, will myclass(char *) still allow
implicit conversions? (Hint: Try it.)

2. Will the following fragment work?

class Demo

{

354

NAMESPACES, CONVERSION FUNCTIONS, AND MISCELLANEOUS TOPICS

13.6. USING LINKAGE SPECIFIERS AND THE asm KEYWORD

double x;

public:

Demo(double i) { x = i; }

// ...

};

// ...

Demo counter = 10;

3. Justify the inclusion of the explicit keyword. (In other words, explain why implicit
constructor conversions might not be a desirable feature of C++ in some cases.)

13.6 USING LINKAGE SPECIFIERS AND THE asm KEY-
WORD

C++ provides two important mechanism s that make it easier to link C++ to other languages.
One is the linkage specifier, which tells the compiler that one or more functions in your C++
program will be linked with another language that might have a different approach to naming,
parameter passing, stack restoration, and the like. The second is the asm keyword, which allows
you to embed assembly language instructions in your C++ source code. Both are examined
here.

By default, all functions in a C++ program are compiled and linked as C++ functions. However,
you can tell the C++ compiler to link a function so that it is compatible with another type of
language. All C++ compilers allow functions to be linked as either C or C++ functions. Some
also allow you to link functions with languages such as Pascal, Ada, Or FORTRAN, To cause a
function to be linked for a different language, use this general form of the linkage specification:

extern "language" function_prototype;

Here language is the name of the language with which you want the specified function to link. If
you want to specify linkage for more than one function, use this form of the linkage specification:

extern "language"

{

function_prototypes

}

All linkage specification must be global; they cannot be used inside a function.

The most common use of linkage specifications occur when linking C++ programs to C code.
By specifying ”C” linkage you prevent the compiler from mangling (also known as decorating)
the names of functions with embedded type information. Because of C++’s ability to overload
functions and create member functions, the link-name of a function usually has type information
added to it. Since C does not support overloading or member functions, it cannot recognize a
mangled name. Using ”C” linkage avoids this problem.

Although it is generally possible to link assembly language routines with a C++ program, there
is often an easier way to use assembly language. C++ supports the special keyword asm, which
allows you to embed assembly language instructions within a C++ function. These instructions
are then compiled as is. The advantage of using an in-line assembler is that your entire program
is completely defined as a C++ program and there is no need to link separate assembly language
files. The general form of the asm keyword is shown here:

asm("op_code");

where op-code is the assembly language instruction that will be embedded in your program.

355

TEACH YOURSELF
C++

It’s important to note that several compilers accept these three slightly different forms of the
asm statement:

asm op_code;

asm op_code newline

asm

{

instruction sequence

}

Here op-code is not enclosed in double quotes. Because embedded assembly language instruction
tends to be implementation dependent, you will want to read your compiler’s user manual on
this issue.
Note: Microsoft Visual C++ uses asm for embedding assembly code. It is otherwise similar
to asm.

EXAMPLES

1. This program links func() as a C, rather than a C++, function:

// Illustrate linkage specifier.

#include <iostream >

using namespace std;

extern "C" int fun(int x); // link as C function

// This function now links as a C function.

int func(int x)

{

return x/3;

}

This function can now be linked with code compiled by a C compiler.

2. The following fragment tells the compiler that f1(), f2(), and f3() should be linked as C
functions:

extern "C"

{

void f1();

int f2(int x);

double f3(double x, int *p);

}

3. This fragment embeds several assembly language instructions into func():

// Don’t try this function!

void func()

{

asm("mov bp , sp");

asm("push ax");

asm("mov c1 , 4");

// ...

}

356

NAMESPACES, CONVERSION FUNCTIONS, AND MISCELLANEOUS TOPICS

13.7. ARRAY-BASED I/O

Remember: You must be an accomplished assembly language programmer in order to
successfully use in-line assembly language. Also, be sure to check your compiler’s user
manual for details regarding assembly language usage.

EXERCISE

1. On your own, study the sections in your compiler’s user manual that refer to linkage
specifications and assembly language interfacing.

13.7 ARRAY-BASED I/O

In addition to console and file I/O, C++ supports a full set of functions that use character
arrays as the input or output device. Although C++’s array-based I/O parallels, in concept,
the array-based I/O found in C (specifically, C’s sscanf() and sprintf() functions), C++’s
array-based I/O is more flexible and useful because it allows user-defined types to be integrated
into it. Although it is not possible to cover every aspect of array-based I/O here, the most
important and commonly used features are examined.

It is important to understand from the outset that array-base I/O still operates through streams.
Everything you learned about C++ I/O in Chapter 8 and 9 is applicable to array-based I/O.
In fact, you need to learn to use just a few new functions to take full advantage of array-based
I/O. These functions link a stream to a region of memory. Once this has been accomplished,
all I/O takes place through the I/O functions you know already.

Before you can use array-based I/O, you must be sure to include the header <strstream>
in your file. In this header are defined the classes istrstream, ostrstream, and strstream.
These classes create array-based input, output, and input/output stream, respectively. These
classes have as a base ios, so all the functions and manipulators included in istream, ostream,
and iostream are also available in istrstream, ostrstream, and strstream.

To use a character array for output, use this general form of the ostrstream constructor:

ostrstream ostr(char *buf , streamsize size , openmode mode=ios::

out);

Here ostr will be the stream associated with the array buf. The size of the array is specified
by size. Generally, mode is simply defaulted to output, but you can use any output mode flag
defined by ios if you like. (Refer to Chapter 9 for details.)

Once an array has been opened for output, characters will be put into the array until it is full.
They array will not be overrun. Any attempt to overfill the array will result in an I/O error.
To find out how many characters have been written to the array, use the pcount() member
function, shown here:

streamsize pcount ();

You must call this function in conjunction with a stream, and it will return the number of
characters written to they array, including any null terminator.

To open an array for input, use this form of the istrstream constructor:

istrstream(const char *buf);

Here buf is a pointer to the array that will be used for input. The input stream will be called
istr. When input is being read from an array, eof() will return true when the end of the array
has been reached.

To open an array for input/output operations, use this form of the strstream constructor:

strstream iostr(char *buf , streamsize size , openmode mode=ios::in

| ios::out);

357

TEACH YOURSELF
C++

Here iostr will be an input output stream that uses the array pointed to by buf, which is size
characters long.
The character-based streams are also referred to as char * streams in some C++ literature.
It is important to remember that all I/O functions described earlier operate with array-based
I/O, including the binary I/O functions and the random-access functions.
Note: The character-based stream classes have been deprecated by Standard C++/ This means
that they are still valid, but future versions of the C++ language might not support them. They
are included in this book because they are still widely used. However, for new code you will
probably want to use one of the containers described in Chapter 14.

EXAMPLES

1. Here is a short example that shows how to open an array for output and write data to it:

// A short example using array -based output.

#include <iostream >

#include <strstream >

using namespace std;

int main()

{

char buf [255]; // output buffer

ostrstream ostr(buf , sizeof buf); // open output array

ostr << "Array -based I/O uses streams just like ";

ostr << "’normal ’ I/O\n" << 100;

ostr << ’ ’ << 123.23 << ’\n’;

// you can use manipulators , too

ostr << hex << 100 << ’ ’;

// or format flags

ostr.setf(ios:: scientific);

ostr << dec << 123.23;

ostr << endl << ends;

// show resultant string

cout << buf;

return 0;

}

This program displays

Array-based I/O uses streams just like ’normal’ I/O

100 123.23

64 01.2323e+02

As you can see, the overloaded I/O operators, built-in I/O manipulators, member func-
tions, and format flags are fully functional when you use array-based I/O. (This is also
true of any manipulators or overloaded I/O operators you create relative to your own
classes.)

358

NAMESPACES, CONVERSION FUNCTIONS, AND MISCELLANEOUS TOPICS

13.7. ARRAY-BASED I/O

This program manually null-terminates the output array by using the ends manipula-
tor. Whether the array will be automatically null terminated or not is implementation
dependent, so it is best to perform this manually if null termination is important to your
application.

2. Here is an example of array-based input:

// An example using array -based input.

#include <iostream >

#include <strstream >

using namespace std;

int main()

{

char buf [255] = "Hello 100 123.125 a";

istrstream istr(buf); // open input array

int i;

char str [80];

float f;

char c;

istr >> str >> i >> f >> c;

cout << str << ’ ’ << i << ’ ’ << f;

cout << ’ ’ << c << ’\n’;

return 0;

}

The program reads and then redisplays the values contained in the input array buf.

3. Keep in mind that an input array, once linked to a stream, will appear the same as a file.
For example, this program uses get() and the eof() function to read the contents of buf :

// Demonstrate get() and eof() with array=based I/O.

#include <iostream >

#include <strstream >

using namespace std;

int main()

{

char buf [255] = "Hello 100 123.125 a";

istrstream istr(buf);

char c;

while (!istr.eof())

{

istr.get(c);

if(!istr.eof())

cout << c;

}

359

TEACH YOURSELF
C++

return 0;

}

4. This program performs input and output on an array:

// Demonstrate an input/output array

#include <iostream >

#include <strstream >

using namespace std;

int main()

{

char iobuf [255];

strstream iostr(iobuf , sizeof iobuf);

iostr << "This is a test\n";

iostr << 100 << hex << ’ ’ << 100 << ends;

char str [80];

int i;

iostr.getline(str , 79); // read string up to \n

iostr >> dec >> i; // read 100

cout << str << ’ ’ << i << ’ ’;

iostr >> hex >> i;

cout << hex << i;

return 0;

}

The program first writes output to iobuf. It then reads it back. It first reads the entire
line ”This is a test” using the getline() function. It then reads the decimal value 100 and
the hexadecimal value 0x64.

EXERCISES
1. Modify Example 1 so it displays the number of characters written to buf prior to termi-

nation.

2. Write an application that uses array-based I/O to copy the contents of one array to
another. (This is, of course, not the most efficient way to accomplish this task.)

3. Using array-based I/O, write a program that converts a string that contains a floating-
point value into its internal representation.

SKILLS CHECK

Mastery Skills Check

At this point you should be able to perform the following exercises and answer the questions.

360

NAMESPACES, CONVERSION FUNCTIONS, AND MISCELLANEOUS TOPICS

SKILLS CHECK

1. What makes a static member variable different from other member variable?

2. What header must be included in your program when you use array-based I/O?

3. Aside from the fact that array-based I/O uses memory as an input and/or output device,
is there any difference between it and ”normal” I/O in C++?

4. Given a function called counter(), show the statement that causes the compiler to compile
this function for C language linkage.

5. What does a conversion function do?

6. Explain the purpose of explicit.

7. What is the principal restriction placed on a const member function?

8. Explain namespace.

9. What does mutable do?

Cumulative Skills Check

This section checks how well you have integrated material in this chapter with that from the
preceding chapter.

1. Since a constructor that requires only one argument provides an automatic conversion
of the type of that argument to its class type, is there a situation in which this feature
eliminates the need to create an overloaded assignment operator?

2. Can a const cast be used within a const member function to allow it to modify its
invoking object?

3. Though question: Since the original C++ library was contained in the global namespace
and all old C++ programs have already dealt with this fact, what is the advantage to
moving the library into the std namespace ”after the fact,” so to speak?

4. Look back at the examples in the first twelve chapters. Think about what member func-
tions can be made const or static. Are there examples in which defining a namespace
would be appropriate?

361

TEACH YOURSELF
C++

May be it bothers us more than it should, but..

This Page Intentionally Left Blank.

362

14
Introducing the Standard

Template Library

Chapter Objectives

14.1 An overview of the Standard Template Library

14.2 The container class

14.3 Vectors

14.4 Lists

14.5 Maps

14.6 Algorithms

14.7 The string class

363

TEACH YOURSELF
C++

Congratulations! If you have worked your way through the preceding chapters of this book,
you can definitely call yourself a C++ programmer. In this, the final chapter of the book, we

will explore one of C++’s most exciting-and most advanced-features: the Standard Template
Library, or STL, was one of the major efforts that took place during the standardization of
C++. The STL, was not part of the original specification for C++ but was added during
the standardization proceedings. The STL provides general-purpose, templatized classes and
functions that implement many popular and commonly used algorithms and data structures.
For example, it includes support for vectors, lists, queues, and stacks. It also defines various
routines that access them. Because the STL is constructed from template classes, the algorithms
and data structures can be applied to nearly any type of data.

It must be stated at the outset that the STL is a complex piece of software engineering that
uses some of C++’s most sophisticated features. To understand and use the STL you must be
comfortable with all of the material in the preceding chapters. Specifically, you must feel at
home with templates. The template syntax that describes the STL can seem quite intimidating-
although it looks more complicated than it actually is. While there is nothing in this chapter
that is any more difficult than the material in the rest of this book, don’t be surprised or
dismayed if you find the STL confusing at first. Just be patient, study the examples, and don’t
let the unfamiliar syntax distract you from the STL’s basic simplicity.

The STL is a large library, and not all of its features can be described in this chapter. In
fact, a full description of the STL and all of its features, nuances, and programming techniques
would fill a large book. The overview presented here is intended to familiarize you with its
basic operation, design philosophy, and programming fundamentals. After working through
this chapter, you will be able to easily explore the remainder of the STL on your own.

This chapter also describes one of C++’s most important new classes: string. The string class
defines a string data type that allows you to work with character strings much as you do with
other data types, using operators.

Review Skills Check

Before proceeding, you should be able to correctly answer the following questions and do the
exercises.

1. Explain why namespace was added to C++.

2. How do you specify a const member function?

3. The mutable modifier allows a library function to be changed by the user of your program.
True or false?

4. Given this class,

class X

{

int a, b;

public:

X(int i, int j) { a = i; b = j; }

// create conversion to int here.

};

create an integer conversion function that returns the sum of a and b.

5. A static member variable can be used before an object of its class exists. True or false?

6. Given this class,

364

INTRODUCING THE STANDARD TEMPLATE LIBRARY
14.1. AN OVERVIEW OF THE STANDARD TEMPLATE LIBRARY

class Demo

{

int a;

public:

explicit Demo(int i) { a = i; }

int geta() { return a; }

};

is the following declaration legal?

Demo o = 10;

14.1 AN OVERVIEW OF THE STANDARD TEMPLATE LI-
BRARY

Although the Standard Template Library is large and its syntax is, at times, rather intimidating,
it is constructed and what elements it employs. Therefore, before looking at any code examples,
an overview of the STL is warranted.

At the core of the Standard Template Library are three foundational items: containers, algo-
rithms, and iterators. These items work in conjunction with one another to provide off-the-shelf
solutions to a variety of programming problems.

Containers are objects that hold other objects. There are several different types of containers.
For example, the vector class defines a dynamic array, queue creates a queue, and list provides
a linear list. In addition to the basic containers, the STL also defines associative containers,
which allow efficient retrieval of values based on keys. For example, the map class defines a
map that provides access to values with unique keys, Thus, a map stores a key/value pair and
allows a value to be retrieved when its key is given.

Each container class defines a set of functions that can be applied to the container. For example,
a list container includes functions that insert, delete, and merge elements. A stack includes
functions that push and pop values.

Algorithms act on containers. Some of the services algorithms perform are initializing, sorting,
searching, and transforming the contents of containers. Many algorithms operate on a sequence,
which is a linear list of elements within a container.

Iterators are objects that are, more or less, pointers. They give you the ability to cycle through
the contents of a container in much the same way that you would use a pointer to cycle through
an array. The five types of iterators are described in the following table.

Iterator Access Allowed

Random access Stores and retrieves values. Elements can be accessed randomly
Bidirectional Stores and retrieves values. Forward and backward moving.
Forward Stores and retrieves values. Forward moving only.
Input Retrieves but does not store values. Forward moving only
Output Stores but does not retrieve values. Forward moving only

In general, an iterator that has greater access capabilities can be used in place of one that has
lesser capabilities. For example, a forward iterator can be used in place of an input iterator.

Iterators are handled just like pointers. You can increment and decrement then. You can apply
the * operator to them. Iterators are declared using the iterator type defined by the various
containers.

The STL also supports reverse iterators. Reverse iterators are either bidirectional or random-
access iterators that move through a sequence in reverse direction. Thus, if a reverse iterator

365

TEACH YOURSELF
C++

points to the end of a sequence, incrementing that iterator will cause it to point to one element
before the end.

When referring to the various iterator types in template descriptions, this book will use the
terms listed in the following table:

Term Iterator Type

BiIter Bidirectional iterator
ForIter Forward iterator
InIter Input iterator
OutIter Output iterator
RandIter Random-access iterator

In addition to containers, algorithms, and iterators, the STL relies upon several other stan-
dard components for support. Chief among these are allocators, predicates, and comparison
functions.

Each container has an allocator defined for it. Allocators manage memory allocation for con-
tainers. The default allocator is an object of class allocator, but you can define your own
allocators if you need them for specialized applications. For most uses, the default allocator is
sufficient.

Several of the algorithms and containers use a special type of function called a predicate. The
are two variations of predicates: unary and binary. A unary predicate takes one argument,
and a binary predicate has two arguments. These functions return true or false; the precise
conditions that make them return true of false are defined by the programmer. In this chapter,
when a unary predicate function is used, it will be notated with the type UnPred. When a
binary predicate is used, it will be of type BinPred. In a binary predicate, the arguments are
always in the order of first, second. For both unary and binary predicates, the arguments will
contain values of the same type as the objects being stored by the container.

Some algorithm and classes use a special type of binary predicate that compares two elements.
Called a comparison function, this type of predicate returns true if its first argument is less
than its second. Comparison functions will be notated by the type Comp.

In addition to the headers required by the various STL classes, the C++ standard library
includes the <utility> and <functional> headers, which provide support for the STL. For
example, <utility> contains the definition of the template class pair, which can hold a pair
of values. We will make use of pair later in this chapter.

The templates in <functional> help you construct objects that define operator(). These
are called function objects, and they can be used in place of function pointer in many places.
There are several predefined function objects declared within <functional>. Some are shown
in the following table.

plus minus multiplies divides modulus
negate equal to not equal to greater greater equal
less less equal logical and logical or logical not

Perhaps the most widely used function object is less, which determines whether the value of
one object is less than the value of another. Function objects can be used in place of actual
function pointers in the STL algorithms described later. Using function objects rather than
function pointers allows the STL to generate more efficient code. However, for the purposes of
this chapter, function objects are not needed and we won’t be using them directly. Although
function objects are not difficult, a detailed discussion of function objects is quite lengthy and
is beyond the scope of this book. They are something that you will need, however, to get
maximum efficiency from the STL.

366

INTRODUCING THE STANDARD TEMPLATE LIBRARY
14.2. THE CONTAINER CLASSES

EXERCISES

1. As they relate to the STL, what are containers, algorithms, and iterators?

2. What are the two-types of predicates?

3. What are the five types of iterators?

14.2 THE CONTAINER CLASSES

As explained, containers are the STL objects that actually data. The containers defined by
the STL are shown in Table 14-1. Also shown are the headers you must include to use each
container. The string class, which manages character strings, is also a container, but it is
discussed later in this chapter.

Container Description Required Header

bitset A set of bits <bitset>
deque A double-ended queue <deque>
list A linear list <list>
map Stores key/value pairs in which each key is <map>

associated with only one value
multimap Stores key/value pairs in which one key can be <map>

associated with two or more values
multiset A set in which each element is not necessarily <set>

unique
priority queue A priority queue <queue>
queue A queue <queue>
set A set in which each element is unique <set>
stack A stack <stack>
vector A dynamic array <vector>

Table 14.1: The Containers Defined by the STL

Because the names of the placeholder types in a template class declaration are arbitrary, the con-
tainer classes declare typedefed versions of these types. This makes the type names concrete.
Some of the most common typedef names are shown in the following table.

typedef Name Description

size type An integral type equivalent to size t
reference A reference to an element
const reference A const reference to an element
iterator An iterator
const iterator A const iterator
reverse iterator A reverse iterator
const reverse iterator A const reverse iterator
value type The type of a value stored in a container
allocator type The type of the allocator
key type The type of a key
key compare The type of a function that compares two keys
value compare The type of a function that compares two values

Although it is not possible to examine each container in this chapter, the next sections explore
three representatives: vector, list, and map. Once you understand how these containers work,
you will have no trouble using the others.

367

TEACH YOURSELF
C++

14.3 VECTORS

Perhaps the most general-purpose of the containers is the vector. The vector class supports
a dynamic array. This is an array that can grow as needed. As you know, in C++ the size of
an array is fixed at compile time. Although this is by far the most efficient way to implement
arrays, it is also the most restrictive, because the size of the array cannot be adjusted at run
time to accommodate changing program conditions. A vector solves this problem by allocating
memory as needed. Although a vector is dynamic, you can still use the standard array subscript
notation to access its elements.
The template specification for vector is shown here:

template <class T, class Allocator=allocator <T>> class vector

Here T is the type of data being stored and Allocator specifies the allocator, which defaults
to the standard allocator. vector has the following constructors:

explicit vector(const Allocator &a=Allocator ());

explicit vector(size_type num , const T &val=T(),

const Allocator &a=Allocator ());

vector(const vector <T, Allocator >&ob);

template <class InIter >vector <InIter start , InIter end ,

const Allocator &a=Allocator ());

The first form constructs an empty vector. The second form constructs a vector that has
num elements with the value val. The value of val can be allowed to default. The third form
constructs a vector that contains the same elements as ob. The fourth form constructs a vector
that contains the elements in the range specified by the iterators start and end.
Any object that will be stored in a vector must define a default constructor. It must also define
the < and == operations. Some compilers might require that other comparison operators
be defined. (Because implementations vary, consult your compiler’s documentation for precise
information.) All of the built-in types automatically satisfy these requirements.
Although the template syntax looks rather complex, there is nothing difficult about declaring
a vector. Here are some examples:

vector <int > iv; // creates a zero -length int vector

vector <char > cv(5); // creates a 5-element char vector

vector <char > cv(5, ’x’); // initializes a 5-element char vector

vector <int > iv2(iv); // creates an int vector from an int vector

The following comparison operators are defined for vector:
==, <, <=, !=, >, >=
The subscripting operator [] is also defined for vector. This allows you to access the elements
of a vector using standard array subscripting notation.
Tge member functions defined by vector are shown in Table 14-2. (Again, it is important
not to be put off by the syntax.) Some of the most important member functions are size(),
begin(), end(), push back(), insert(), and erase(). The size() function returns the current
size of the vector. This function is quite useful because it allows you to determine the size of
a vector at run time. Remember, vectors will increase in size as needed, so the size of a vector
must be determined during execution, not during compilation.
The begin() function returns an iterator to the start of the vector. The end() function returns
an iterator to the end of the vector. As explained, iterators are similar to pointers, and it is
through the use of the begin() and end() functions that you obtain an iterator to the beginning
and end of a vector.

368

INTRODUCING THE STANDARD TEMPLATE LIBRARY
14.3. VECTORS

Member Function Description

template<class InIter>
void assign(InIter start, InIter end);

Assigns the vector the sequence defined
by start and end.

template<class Size, class T>
void assign(Size num,

const T &val=T());

Assigns the vector num elements of value
val.

reference at(size type i);
const reference at(size tyoe i) const;

Returns a reference to an element
specified by i.

reference back(); Returns a reference to the last element in
const reference back() const; the vector.

iterator begin(); Returns an iterator to the first element in
const iterator begin() const; the vector.

size type capacity() const;

Returns the current capacity of the
vector. This is the number of elements it
can hold before it will need to allocate
more memory.

void clear(); Removes all elements from the vector.

bool empty() const;
Returns true if the invoking vector is
empty and false otherwise.

iterator end();
const iterator end() const;

Returns an iterator to the end of the
vector.

iterator erase(iterator i);
Removes the element pointed to by i.
Returns an iterator to the element after
the one removed.

iterator erase(iterator start,
iterator end);

Removes the elements in the range start
to end. Returns an iterator to the
element after the last element removed.

reference front();
const reference front() const;

Returns a reference to the first element
in the vector.

allocator type get allocator() const; Returns the vector’s allocator.

iterator insert(iterator i,
const T &val=T());

Inserts val immediately before the
element specified by i. An iterator to the
element is returned.

void insert(iterator i, size type num,
const T &val)

Inserts num copies of val immediately
before the element specified by i.

template<class InIter>
void insert(iterator i, InIter start,

InIter end);

Inserts the sequence defined by start and
end immediately before the element
specified by i.

size type max size() const;
Returns the maximum number of
elements that the vector can hold.

reference operator[](size type i) const;
const reference operator[](size type i)

const;

Returns a reference to the element
specified by i.

void pop back(); Removes the last element in the vector.

void push back(const T &val);
Adds an element with the value specified
by val to the end of the vector.

reverse iterator rbegin();
const reverse iterator rbegin() const;

Returns a reverse iterator to the end of
the vector.

Table 14.2: The vector Member Functions

369

TEACH YOURSELF
C++

Member Function Description

reverse iterator rend();
const reverse iterator rend() const;

Returns a reverse iterator to the start of
the vector.

void reserve(size type num);
Sets the capacity of the vector so that it
is equal to at least num.

void resize(size type, num, T
val=T());

Changes the size of the vector to that
specified by num. If the vector must be
lengthened, elements with the value
specified by val are added to the end.

size type size() const;
Returns the number of elements
currently in the vector.

void swap(vector<T, Allocator>&ob)
Exchanges the elements stored in the
invoking vector with those in ob.

Table 14.2: The vector Member Functions (continued)

The push back() function puts a value onto the end of the vector. If necessary, the vector is
increased in length to accommodate the new element. You can also add elements to the middle
using insert(). A vector can also be initialized. In any event, once a vector contains elements,
you can use array subscripting to access or modify those elements. You can remove elements
from a vector using erase().

EXAMPLES

1. Here is a short example that illustrates the basic operation of a vector.

// Vector basics.

#include <iostream >

#include <vector >

using namespace std;

int main()

{

vector <int > v; // create zero -length vector

int i;

// display original size of v

cout << "Size = " << v.size() << endl;

/*

put values onto end of vector

vector will grow as needed

*/

for(i=0; i<10; i++)

v.push_back(i);

// display current size of v

cout << "Size now = " << v.size() << endl;

// display contents of vector

cout << "Current contents :\n";

for(i=0; i<v.size(); i++)

370

INTRODUCING THE STANDARD TEMPLATE LIBRARY
14.3. VECTORS

cout << v[i] << " ";

cout << endl;

/*

put more values onto end of vector

again , vector will grow as needed

*/

for(i=0; i<10; i++)

v.push_back(i+10);

// display current size of v

cout << "Size now = " << v.size() << endl;

// display contents of vector; cout << "Current

contents :\n"l

for(i=0; i<v.size(); i++)

cout << v[i] << " ";

cout << endl;

// change contents of vector

for(i=0; i<v.size(); i++)

v[i] = v[i] + v[i];

// display contents of vector

cout << "Current contents :\n";

for(i=0; i<v.size(); i++)

cout << v[i] << " ";

cout << endl;

return 0;

}

The output of this program is shown here:

Size = 0

Size now = 10

Current contents:

0 1 2 3 4 5 6 7 8 9

Size now = 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Current contents:

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Let’s look at this program carefully. In main(), an integer vector called v is created. Since
no initialization is used, it is an empty vector with an initial capacity of zero. That is, it
is a zero-length vector. The program confirms this by calling the size() member function.
Next, ten elements are added to the end of v with the member function push back().
This causes v to grown in order to accommodate the new elements. As the output shows,
its size after these additions is 10. Next, the contents of v are displayed. Notice that the
standard array subscripting notation is employed. Next, ten more elements are added and

371

TEACH YOURSELF
C++

v automatically increased in size to handle them. Finally, the values of v’s elements are
altered using standard subscripting notation.

There is one other pewit of interest in this program. Notice that the loops that display
the contents of v use as their target v.size(). One of the advantages that vectors have
over arrays is that it is possible to find the current size of a vector. As you can imagine,
this is quite useful in a variety of situations.

2. As you know, arrays and pointers are tightly liked in C++. An array can be accessed
either through subscripting or through a pointer. The parallel to this in the STL is the
link between vectors and iterators. You can access the members of a vector by using sub-
scripting or by using an iterator. The following example shows both of these approaches.

// Access a vector using an iterator

#include <iostream >

#include <vector >

using namespace std;

int main()

{

vector <int > v; // create zero -length vector

int i;

// push values into a vector

for(i=0; i<10; i++)

v.push_back(i);

// can access vector contents using subscripting

for(i=0; i<10; i++)

cout << v[i] << " ";

cout << endl;

// access via iterator

vector <int >:: iterator p = v.begin();

while(p != v.end())

{

cout << *p << " ";

p++;

}

return 0;

}

The output from this program is:

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

In this program, the vector is initially created with zero length. The push back() member
function puts values onto the end of the vector, expanding its size as needed.

Notice how the iterator p is declared. The type iterator is defined by the container
classes. Thus, to obtain an iterator for a particular container, you will use a declaration
similar to that shown in the example: simply qualify iterator with the name of the
container. In the program, p is initialized to point to the start of the vector by using the

372

INTRODUCING THE STANDARD TEMPLATE LIBRARY
14.3. VECTORS

begin() member function. This function returns an iterator to the start of the vector.
This iterator can then be used to access the vector an element at a time by incrementing
it as needed. This process is directly parallel to the way a pointer can be used to access
the elements of an array. To determine when the end of the vector has been reached, the
end() member function is employed. This function returns an iterator to the location
that is one past the last element in the vector. Thus, when p equals v/end(), the end of
the vector has been reached.

3. In addition to putting new values on the end of a vector, you can insert elements into the
middle using the insert() function. You can also remove elements using erase(). The
following program demonstrates insert() and erase().

// Demonstrate insert and erase.

#include <iostream >

#include <vector >

using namespace std;

int main()

{

vector <int > v(5, 1); // create 5-element vector of 1s

int i;

// display original contents of vector

cout << "Size = " << v.size() << endl;

cout << "Original contents :\n";

for(i=0; i<v.size(); i++)

cout << v[i] << " ";

cout << endl << endl;

vector <int >:: iterator p = v.begin();

p += 2; // point to 3rd element

// insert 10 elements with value 9

v.insert(p, 10, 9);

// display contents after insertion

cout << "Size after insert = " << v.size() << endl;

cout << "Contents after insert :\n";

for(i=0; i<v.size(); i++)

cout << v[i] << " ";

cout << endl << endl;

// remove those elements

p = v.begin ();

p += 2; // point to 3rd element

v.erase(p, p+10); // remove next 10 elements

// display contents after deletion

cout << "Size after erase = " << v.size() << endl;

cout << "Contents after erase:\n";

for(i=0; i<v.size(); i++)

cout << v[i] << " ";

373

TEACH YOURSELF
C++

cout << endl;

return 0;

}

This program produces the following output.

Size = 5

Original contents:

1 1 1 1 1

Size after insert = 15

Contents after insert:

1 1 9 9 9 9 9 9 9 9 9 9 1 1 1

Size after erase = 5

Contents after erase:

1 1 1 1 1

4. Here is an example that uses a vector to store objects of a programmer-defined class.
Notice that the class defines the default constructor and that overloaded versions of < an
== are provided. Remember, depending upon how your compiler implements the STL,
other comparison operators might need to be defined.

// Store a class object in a vector

#include <iostream >

#include <vector >

using namespace std;

class Demo

{

double d;

public:

Demo() { d = 0.0; }

Demo(double x) { d = x; }

Demo &operator =(double x)

{

d = x;

return *this;

}

double getd() { return d; }

};

bool operator <(Demo a, Demo b)

{

return a.getd() < b.getd();

}

bool operator ==(Demo a, Demo b)

{

return a.getd() == b.getd();

374

INTRODUCING THE STANDARD TEMPLATE LIBRARY
14.4. LISTS

}

int main()

{

vector <Demo > v;

int i;

for(i=0; i<10; i++)

v.push_back(Demo(i/3.0));

for(i=0; i<v.size(); i++)

cout << v[i].getd() << " ";

cout << endl;

for(i=0; i<v.size(); i++)

v[i] = v[i].getd() * 2.1;

for(i=0; i<v.size(); i++)

cout << v[i].getd() << " ";

return 0;

}

The output from this program is shown here.

0 0.333333 0.666667 1 1.33333 1.66667 2 2.33333 2.66667 3

0 0.7 1.4 2.1 2.8 3.5 4.2 4.9 5.6 6.3

EXERCISES

1. Try the examples just shown, making small modifications and observing their effects.

2. In Example 4, both a default (i.e., parameterless) and a parameterized constructor were
defined for Demo. Can you explain why this is important?

3. Here is a simple Coord class. Write a program that stores objects of type Coord in a
vector. (Hint: Remember to define the < and == operators relative to Coord.)

class Coord

{

public:

int x, y;

Coord () { x = y = 0; }

Coord(int a, int b) { x = a; y = b; }

};

14.4 LISTS

The list class supports a bidirectional, linear list. Unlike a vector, which supports random
access, a list can be accessed sequentially only. Because lists are bidirectional, they can be
accessed front to back or back to front.
The list class has this template specification:

375

TEACH YOURSELF
C++

template <class T, class Allocator=allocator <T>>class list

Here T is the type of data stored in the list. The allocator is specified by Allocator, which
defaults to the standard allocator. This class has the following constructors:

explicit list(const Allocator &a=Allocator ());

explicit list(size_type num , const T &val=T(),

const Allocator &a=Allocator ());

list(const list <T, Allocator > &ob);

template <class InIter >list(InIter start , InIter end ,

const Allocator &a=Allocator ());

The first form constructs empty list. The second form constructs a list that has num elements
with the value val, which can be allowed to default. The third form constructs a list that
contains the same elements as ob. The fourth form constructs a list that contains the elements
in the range specified by the iterators start and end.

Member Function Description

template<class InIter>
void assign(InIter start, InIter end);

Assigns the list the sequence defined by start
and end.

template<class Size, class T>
void assign(Size num,

const T &val=T());
Assigns the list num elements of value val.

reference back();
const reference back() const;

Returns a reference to the last element in the
list.

iterator begin();
const iterator begin() const;

Returns an iterator to the first element in the
list.

void clear(); Removes all elements from the list.

bool empty() const;
Returns true if the invoking list is empty and
false otherwise.

iterator end();
const iterator end() const;

Returns an iterator to the end of the list.

iterator erase(iterator i);
Removes the element pointed to by i.
Returns an iterator to the element after the
one removed.

iterator erase(iterator start,
iterator end);

Removes the elements in the range start to
end. Returns an iterator to the element after
the last element removed.

reference front();
const reference front() const;

Returns a reference to the first element in the
list.

allocator type get allocator() const; Returns the list’s allocator.

iterator insert(iterator i,
const T &val=T());

Inserts val immediately before the element
specified by i. An iterator to the element is
returned.

void insert(iterator i, size type num,
const T &val)

Inserts num copies of val immediately before
the element specified by i.

template<class InIter>
void insert(iterator i, InIter start,

InIter end);

Inserts the sequence defined by start and end
immediately before the element specified by i.

Table 14.3: The list Member Functions

376

INTRODUCING THE STANDARD TEMPLATE LIBRARY
14.4. LISTS

Member Function Description

size type max size() const;
Returns the maximum number of elements
that the list can hold.

void merge(list<T,Allocator>&ob);
template<class Comp>

void merge(<list<T,
Allocator>>&ob,

Comp cmpfn);

Merges the ordered list contained in ob with
the invoking ordered list. The result is
ordered. After the merge, the list contained
in ob is empty. In the second form, a
comparison function can be specified to
determine whether the value of one element
is less than that of another.

void pop back(); Removes the last element in the list.

void pop front(); Removes the first element in the list.

void push back(const T &val);
Adds an element with the value specified by
val to the end of the list.

void push front(const T &val);
Adds an element with the value specified by
val to the front of the list.

reverse iterator rbegin();
const reverse iterator rbegin() const;

Returns a reverse iterator to the end of the
list.

void remove(const T &val);
Remove elements with the value val from the
list.

template<class UnPred>
void remove if(UnPred pr);

Removes elements for which the unary
predicate pr is true.

reverse iterator rend();
const reverse iterator rend() const;

Returns a reverse iterator to the start of the
list.

void resize(size type, num, T val=T());

Changes the size of the list to that specified
by num. If the list must be lengthened,
elements with the value specified by val are
added to the end.

void reverse(); Reverses the invoking list.

size type size() const;
Returns the number of elements currently in
the list.

void sort();
template<class Comp>

void sort(Comp cmpfn);

Sorts the list. The second for sorts the list
using the comparison function cmpfn to
determine whether the value of one element
is less than that of another.

void splice(iterator i,
list<T, Allocator>&ob;

Inserts the contents of ob into the invoking
list at the location pointed to by i. After the
operation ob is empty.

void splice(iterator i,
list<T, Allocator>&ob,
iterator el);

Removes the element pointed to by el from
the list ob and stores it in the invoking list at
the location pointed to by i.

void splice(iterator i,
list<T, Allocator>&ob,
iterator start, iterator end);

Removes the range defined by start and end
from ob and stores it in the invoking list
beginning at the location pointed by i.

void swap(list<T, Allocator>&ob)
Exchanges the elements stored in the
invoking list with those in ob.

void unique();
template<class BinPred>

void unique(BinPred pr);

Removes duplicate elements from the
invoking list. The second from uses pr to
determine uniqueness.

Table 14.3: The list Member Functions (continued)

377

TEACH YOURSELF
C++

The following comparison operators are defined for list:
==, <, <=, !=, >, >=
The member function defined for list are shown in Table 14-3. Like a vector, a list can have
elements put into it with the push back() function. You can put elements on the front of
the list by using push front, and you can insert an element into the middle of a list by using
insert(). You can use splice() to join two lists, and you can merge one list into another by
using merge().
Any data type that will be held in a list must define a default constructor. It must also define
the various comparison operators. At the time of this writing, the precise requirements for an
object that will be stored in a list vary from compiler to compiler and are subject to change, so
you will need to check your compiler’s documentation.

EXAMPLES
1. Here is a simple example of a list.

// List basics.

#include <iostream >

#include <list >

using namespace std;

int main()

{

list <char > lst; // create an empty list

int i;

for(i=0; i<10; i++)

lst.push_back(’A’+i);

cout << "Size = " << lst.size() << endl;

list <char >:: iterator p;

cout << "Contents: ";

while (!lst.empty ())

{

p = lst.begin ();

cout << *p;

lst.pop_front ();

}

return 0;

}

The output produced by this program is shown here.

Size = 10

Contents: ABCDEFGHIJ

This program creates a list of characters. First, an empty list object is created. Next, ten
characters, the letters A through J, are put into the list. This is accomplished with the
push back() function, which puts each new value on the end of the existing list. Next,
the size of the list is displayed. Then, the contents of the list are output by repeatedly
obtaining, displaying, and then removing the first element in the list. This process stops
when the list is empty.

378

INTRODUCING THE STANDARD TEMPLATE LIBRARY
14.4. LISTS

2. In the previous example, the list was emptied as it was traversed. That is, of course, not
necessary. For example, the loop that displays the list could be recoded as shown here.

list <char >:: iterator p = lst.begin();

while(p != lst.end())

{

cout << *p;

p++;

}

Here the iterator p is initialized to point to the start of the list. Each time through the
loop, p is incremented, causing it to point to the next element. The loop ends when p
points to the end of the list.

3. Because lists are bidirectional, elements can be put on a list either at the front or at the
back. For example, the following program creates two list, with the first being the reverse
of the second.

// Elements can but on the front or end of a list.

#include <iostream >

#include <list >

using namespace std;

int main()

{

list <char > lst;

list <char >revlst;

int i;

for(i=0; i<10; i++)

lst.push_back(’A’+i);

cout << "Size of lst = " << lst.size() << endl;

cout << "Original contents: ";

list <char >:: iterator p;

/*

Remove elements from lst and put them

into revlst in reverse order.

*/

while (!lst.empty ())

{

p = lst.begin ();

cout << *p;

lst.pop_front ();

revlst.push_front (*p);

}

cout << endl << endl;

cout << "Size revlst = ";

cout << revlst.size() << endl;

379

TEACH YOURSELF
C++

cout << "Reversed contents: ";

p = revlst.begin ();

while(p != revlst.end())

{

cout << *p;

p++;

}

return 0;

}

This program produces the following output.

Size of lst = 10

Original contents: ABCDEFGHIJ

Size revlst = 10

Reversed contents: JIHGFEDCBA

In the program, the list is reversed by removing elements from the start of lst and pushing
them onto the front of revlst. This causes elements to be stored in reverse order in revlst.

4. You can sort a list by calling the sort()member function. The following program creates
a list of random characters and then puts the list into sorted order.

// Sort a list.

#include <iostream >

#include <list >

#include <cstdlib >

using namespace std;

int main()

{

list <char > lst;

int i;

// create a list of random characters

for(i=0; i<10; i++)

lst.push_back(’A’+(rand()%26));

cout << "Original contents: ";

list <char >:: iterator p = lst.begin();

while(p != lst.end())

{

cout << *p;

p++;

}

cout << endl << endl;

// sort the list

lst.sort();

cout << "Sorted contents: ";

380

INTRODUCING THE STANDARD TEMPLATE LIBRARY
14.4. LISTS

p = lst.begin ();

while(p != lst.end())

{

cout << *p;

p++;

}

return 0;

}

Here is sample output produced by the program.

Original contents: PHQGHUMEAY

Sorted contents: AEGHHMPQUY

5. One ordered list can be merged with another. The result is an ordered list that contains
the contents of the two original lists. The new list is left in the invoking list and the second
list is left empty. This example merges two lists. The fist contains the letters ACEGI and
the second BDFHJ. These lists are then merged to produce the sequence ABCDEFGHIJ.

// Merge two lists.

#include <iostream >

#include <list >

using namespace std;

int main()

{

list <char > lst1 , lst2;

int i;

for(i=0; i<10; i+=2)

lst1.push_back(’A’+i);

for(i=1; i<11; i+=2)

lst2.push_back(’A’+i);

cout << "Contents of lst1: ";

list <char >:: iterator p = lst1.begin();

while(p != lst1.end())

{

cout << *p;

p++;

}

cout << endl << endl;

cout << "Contents of lst2: ";

p = lst2.begin ();

while(p != lst2.end())

{

cout << *p;

p++;

}

cout << endl << endl;

381

TEACH YOURSELF
C++

// now , merge the two lists

lst1.merge(lst2);

if(lst2.empty())

cout << "lst2 is now empty\n";

cout << "Contents of lst1 after merge:\n";

p = lst1.begin ();

while(p != lst1.end())

{

cout << *p;

p++;

}

return 0;

}

The output produced by this program is shown here.

Contents of lst1: ACEGI

Contents of lst2: BDFHJ

lst2 is now empty

Contents of lst1 after merge:

ABCDEFGHIJ

6. Here is an example that uses a list to store objects of type Project, which is a class
that helps manage software projects. Notice that the <, >, !=, and == operators are
overloaded for objects of type Project. These are the operators that were required by
Microsoft’s Visual C++5(the compiler used to test the STL examples in this chapter).
Other compilers might require you to overload additional operators. The STL uses require
you to overload additional operators. The STL uses these functions to determine the
ordering and equality of objects in a container. Even though a list is not an ordered
container, it still needs a way to compare elements when searching, sorting, or merging.

#include <iostream >

#include <list >

#include <cstring >

using namespace std;

class Project

{

public:

char name [40];

int days_to_completion;

Project ()

{

strcpy(name , "");

days_to_completion = 0;

}

Project(char *n, int d)

{

382

INTRODUCING THE STANDARD TEMPLATE LIBRARY
14.4. LISTS

strcpy(name , n);

days_to_completion = d;

}

void add_days(int i)

{

days_to_completion += i;

}

void sub_days(int i)

{

days_to_completion -= i;

}

bool completed () { return !days_to_completion; }

void report ()

{

cout << name << ": ";

cout << days_to_completion;

cout << " days left.\n";

}

};

bool operator <(const Project &a, const Project &b)

{

return a.days_to_completion < b.days_to_completion;

}

bool operator >(const Project &a, const Project &b)

{

return a.days_to_completion > b.days_to_completion;

}

bool operator ==(const Project &a, const Project &b)

{

return a.days_to_completion == b.days_to_completion;

}

bool operator !=(const Project &a, const Project &b)

{

return a.days_to_completion != b.days_to_completion;

}

int main()

{

list <Project > proj;

proj.push_back(Project("Compiler", 35));

proj.push_back(Project("Spreadsheet", 190));

proj.push_back(Project("STL implementation", 1000));

list <Project >:: iterator p = proj.begin();

// display projects

383

TEACH YOURSELF
C++

while(p != proj.end())

{

p->report ();

p++;

}

// add 10 days to lst project

p = proj.begin ();

p->add_days (10);

// move lst project to completion

do

{

p->sub_days (5);

p->report ();

}

while (!p->completed ());

return 0;

}

The output from this program is shown here.

Compiler: 35 days left.

Spreadsheet: 190 days left.

STL Implementation: 1000 days left.

Compiler: 40 days left.

Compiler: 35 days left.

Compiler: 30 days left.

Compiler: 25 days left.

Compiler: 20 days left.

Compiler: 15 days left.

Compiler: 10 days left.

Compiler: 5 days left.

Compiler: 0 days left.

EXERCISES

1. Experiment with the examples, trying minor variations.

2. In Example 1, the list was emptied in the process of displaying it. In Example 2, you saw
another way to traverse a list that does not destroy it. Can you think of another way to
traverse a list without emptying it? Show that your solution works by substituting it into
the program in Example 1.

3. Expand Example 6 by creating another list of projects that consists of the following:

384

INTRODUCING THE STANDARD TEMPLATE LIBRARY
14.5. MAPS

Project Days To Completion

Database 780
Mail merge 50
COM objects 300

Next, sort both lists and then merge them together. Display the final result.

14.5 MAPS

The map class supports an associative container in which unique keys are mapped with values.
In essence, a key is simply a name that you give to a value. Once a value has been stored, you
can retrieve it by using its key. Thus, in its most general sense a map is a list of key/value
pairs. The power of a map is that you can look up a value given its key. For example, you could
define a map that uses a person’s name as its key and stores that person’s telephone number as
its value. Associative containers are becoming more popular in programming.
As mentioned, a map can hold only unique keys. Duplicate keys are not allowed. To create a
map that allows nonunique keys, use multimap.
The map container has the following template specification:

template <class Key , class T, class Comp=less <Key >,

class Allocator=allocator <T>>class map

Here Key is the data type of the keys, T is the data type of the values being stored (mapped),
and Comp is a function that compares two keys. This defaults to the standard less() utility
function object. Allocator is the allocator (which defaults to aallocator).
The map class has the following constructors:

explicit map(const Comp &cmpfn=Comp(),

const Allocator &a=Allocator ());

map(const map <Key , T, Comp , Allocator >&ob);

template <class InIter >map(InIter start , InIter end ,

const Comp &cmpfn=Comp(), const Allocator &a=Allocator ());

The first form constructs an empty map. The second form constructs a map that contains the
same elements as ob. The third form constructs a map that contains the elements in the range
specified by the iterators start and end. The function specified by cmpfn, if present, determines
the ordering of the map.
In general, any object used as a key must define a default constructor and overload any necessary
comparison operators.
The following comparison operators are defined for map.
==, <, <=, !=, >, >=
The member functions defined by map are shown in Table 14-4. In the descriptions, key type
is the type of the key and value type represents pair<Key, T>.

385

TEACH YOURSELF
C++

Member Function Description

iterator begin();
const iterator begin() const;

Returns an iterator to the first element
in the map.

void clear(); Removes all elements from the map.

size tyoe count(const key type &k) const;
Returns the number of times k occurs in
the map (1 or 0).

bool empty() const;
Returns true if the invoking map is
empty and false otherwise.

iterator end(); newline const iterator end()
const;

Returns an iterator to the end of the
map.

pair<iterator, iterator>
equal range(const key type &k);

pair<const iterator, const iterator>
equal range(const key type &k) const;

Returns a pair of iterators that point to
the first and last elements in the map
that contain the specified key.

void erase(iterator i); Removes the element pointed to by i.

void erase(iterator start, iterator end);
Removes the elements in the range start
to end.

size type erase(const key type &k);
Removes elements that have keys with
the value k.

iterator find(const key type &k);
const iterator find(const key type &k)

const;

Returns an iterator to the specified key.
If the key is not found, an iterator to the
end of the map is returned.

allocator type get allocator() const; Returns the map’s allocator.

iterator insert(iterator i,
const value type &val);

Inserts val at or after the element
specified by i. An iterator to the element
is returned.

template <class InIter>
void insert(InIter start, InIter end);

Inserts a range of elements.

pair<iterator, bool>
insert(const value type &val);

Inserts val into the invoking map. An
iterator to the element is returned. The
element is inserted only if it does not
already exist. If the element was
inserted, pair<iterator, true> is
returned. Otherwise, pair<iterator,
false> is returned.

key compare key comp() const;
Returns the function object that
compares keys.

iterator lower bound(const key type &k);
const iterator

lower bound(const key type &k const;

Returns an iterator to the first element
in the map with key equal to or greater
than k.

size type max size() const;
Returns the maximum number of
elements that the map can hold.

reference operator[](const key type &i);
Returns a reference to the element
specified by i. If this element does not
exist, it is inserted.

reverse iterator rbegin();
const reverse iterator rbegin() const;

Returns a reverse iterator to the end of
the map.

Table 14.4: The map Member Functions

386

INTRODUCING THE STANDARD TEMPLATE LIBRARY
14.5. MAPS

Member Function Description

reverse iterator rend();
const reverse iterator rend() const;

Returns a reverse iterator to the start of
the map.

size type size() const;
Returns the number of elements
currently in the map.

void swap(map<Key, T, Comp,
Allocator>&ob);

Exchanges the elements stored in the
invoking map with those in ob.

iterator upper bound(const key type &k);
const iterator

upper bound(const key type &k)
const;

Returns an iterator to the first element
in the map with the key greater than k.

value compare value comp() const;
Returns the function object that
compares values.

Table 14.4: The map Member Functions (continued)

Key/value pairs are stored in a map as objects of type pair, which has this template specifica-
tion:

template <class Ktype , class Vtype > struct pair

{

typedef Ktype first_type; // type of key

typedef Vtype second_type; // type of value

Ktype first; // contains the key

Vtype second; contains the value

// constructors

pair();

pair(const Ktype &k, const Vtype &v);

template <class A, class B> pair(const <A, B> &ob);

}

As the comments suggest, the value in first contains the key and the value in second contains
the value associated with that key.
You can construct a pair using either one of pair’s constructors or by using make pair(), which
constructs a pair object based upon the types of the data used as parameters. make pair()
is a generic function that has this prototype:

template <class Ktype , class Vtype >

pair <Ktype , Vtype > make_pair(const Ktype &k, const Vtype &v);

As you can see, it returns a pair object consisting of values of the types specified by Ktype and
Vtype. The advantage of make pair() is that it allows the types of the objects being stored to
be determined automatically by the compiler rather than being explicitly specified by you.

EXAMPLES

1. The following program illustrates the basics of using a map. It stores ten key/value pairs.
The key is a character and the value is an integer. The key/value pairs stored are

A 0
B 1
C 2

and so on. Once the pairs have been stored, the user is prompted for a key (i.e., a letter
from A through J), and the value associated with that key is displayed.

387

TEACH YOURSELF
C++

// A simple map demonstration.

#include <iostream >

#include <map >

using namespace std;

int main()

{

map <char , int > m;

int i;

// put pairs into map

for(i=0; i<10; i++)

m.insert(pair <char , int >(’A’+i, i));

char ch;

cout << "Enter key: ";

cin >> ch;

map <char , int >:: iterator p;

// find value given key

p = m.find(ch);

if(p != m.end())

cout << p->second;

else

cout << "Key not in map.\n";

return 0;

}

Notice the use of the pair template class to construct the key/value pairs. The data types
specified specified by pair must match those of the map into which the pairs are being
inserted.

Once the map has been initialized with keys and values, you can search for value given its
key by using the find() function. find() returns an iterator to the matching element or to
the end of the map if the key is not found. When a match is found, the value associated
with the key is contained in the second member of pair.

2. In the preceding example, key/value pairs were constructed explicitly, using pair<char,
int>. Although there is nothing wrong with this approach, it is often easier to use
make pair() which constructs a pair object based upon the types of the data used as
parameters. For example, assuring the previous program, this line of code will also insert
key/value pairs into m:

m.insert(make_pair ((char)(’A’+i), i));

Here the cast to char is needed to override the automatic conversion to int when i is
added to ’A’. Otherwise, the type determination is automatic.

3. Like all of the containers, maps can be used to store objects of types that you create. For
example, the program shown here creates a map of words with their opposites. To do this
it creates two classes called word and opposite. Since a map maintains a sorted list of
keys, the program also defines the < operator for objects of type word. In general, you

388

INTRODUCING THE STANDARD TEMPLATE LIBRARY
14.5. MAPS

must define the < operator for any classes that you will use as keys. (Some compilers
might require that additional comparison operators be defined.)

// A map of opposites.

#include <iostream >

#include <map >

#include <cstring >

using namespace std;

class word

{

char str [20];

public:

word() { strcpy(str , " "); }

word(char *s) { strcpy(str , s); }

char *get() { return str; }

};

// must define less than relative to word objects

bool operator <(word a, word b)

{

return strcmp(a.get(), b.get()) < 0;

}

class opposite

{

char str [20];

public:

opposite () { strcpy(str , " "); }

opposite(char *s) { strcpy(str , s); }

char *get() { return str; }

};

int main()

{

map <word , opposite > m;

// put words and opposites into map

m.insert(pair <word ,

opposite >(word("yes"), opposite("no")));

m.insert(pair <word ,

opposite >(word("good"), opposite("bad")));

m.insert(pair <word ,

opposite >(word("left"), opposite("right")));

m.insert(pair <word ,

opposite >(word("up"), opposite("down")));

// given a word , find opposite

char str [80];

cout << "Enter word: ";

cin >> str;

389

TEACH YOURSELF
C++

map <word , opposite >:: iterator p;

p = m.find(word(str));

if(p != m.end())

cout << "Opposite: " << p->second.get();

else

cout << "Word not in map\n";

return 0;

}

In this example, each entry in the map is a character array the holds a null-terminated
string. Later in this chapter, you will see an easier way to write this program that uses
the standard string type.

EXERCISES

1. Experiment with the examples, trying small variations.

2. Create a map that contains names and telephone numbers. Allow names and numbers
to be entered, and set yp your program so that a number can be found when a name is
given. (Hint: Use Example 3 as a model.)

3. Do you need to define the < operator for objects used as keys in a map?

14.6 ALGORITHMS

As explained, algorithms act on containers. Although each container provides support for its
own basic operations, the standard algorithms provide more extended or complex actions. They
also allow you to work with two different types of containers at the same time. To have access
to the STL algorithms, you must include <algorithm> in your program.
The STL defines a large number of algorithms, which are summarized in Table 14-5. All of
the algorithms are template functions. This means that they can be applied to any type of
container. The examples that follow demonstrate a representative sample.

Algorithm Purpose

adjacent find
Searches for adjacent matching elements within a
sequence and returns an iterator to the first match.

binary search Performs a binary search on an ordered sequence.

copy Copies a sequence.

copy backward
Same as copy() except that it moves the elements
from the end of the sequence first.

count Returns the number of elements in the sequence.

count if
Returns the number of elements in the sequence that
satisfy some predicate.

equal Determines whether two ranges are the same.

equal range
Returns a range in which an element can be inserted
into a sequence without disrupting the ordering of
the sequence.

Table 14.5: The STL Algorithms

390

INTRODUCING THE STANDARD TEMPLATE LIBRARY
14.6. ALGORITHMS

Algorithm Purpose

fill
fill n

Fills a range with the specified value.

find
Searches a range for a value and returns an iterator
to the first occurrence of the element.

find end
Searches a range for a subsequence. This function
returns an iterator to the end of the subsequence
within the range.

find first of
Finds the first element within a sequence that
matches an element within a range.

find if
Searches a range for an element for which a
user-defined unary predicate returns true.

for each Applies a function to a range of elements.

generate
generate n

Assigns to elements in a range the values returned by
a generator function.

includes
Determines whether one sequence includes all of the
elements all of the elements in another sequence.

inplace merge
Merges a range with another range. Both ranges
must be sorted in increasing order. The resulting
sequence is sorted.

iter swap
Exchanges the values pointed to by its two iterator
arguments.

lexicographical compare Alphabetically compares one sequence with another.

lower bound
Finds the first point in the sequence that is not less
than a specific value.

make heap Constructs a heap from a sequence.

max Returns the maximum of two values.

min element
Returns an iterator to the minimum element within a
range.

mismatch
Finds the first mismatch between the elements in two
sequences. Iterators to the two elements are returned.

next permutation Constructs the next permutation of a sequence.

nth element
Arranges a sequence such that all elements less than
a specified element E come before that element and
all elements greater than E come after it,

partial sort Sorts a range.

partial sort copy
Sorts a range and then copies as many elements as
will fit into a result sequence.

partition
Arranges a sequence such that all elements for which
a predicate returns true come before those for which
the predicate returns false.

pop heap
Exchanges the first and last -1 elements and then
rebuilds the heap.

prev permutation Constructs the previous permutation of a sequence.

push heap Pushes an element onto the end of a heap.

remove
remove if
remove copy
remove copy if

Removes elements from a specified range.

Table 14.5: The STL Algorithms (continued)

391

TEACH YOURSELF
C++

Algorithm Purpose

replace
replace if
replace copy
replace copy if

Replaces elements within a specified range.

reverse
reverse copy

Reverses the order of a range.

rotate
rotate copy

Left-rotates the elements in a range.

search Searches for a subsequence within a sequence.

search n
Searches for a sequence of a specified number of
similar elements.

set difference
Produces a sequence that contains the difference
between ordered sets.

set intersection
Produces a sequence that contains the intersection of
two ordered sets.

set symmetric difference
Produces a sequence that contains the symmetric
difference between two ordered sets.

set union
Produces a sequence that contains the union of two
ordered sets.

sort Sorts a range.

sort heap Sorts a heap within a specified range.

stable partition

Arranges a sequence such that all elements for which
a predicate returns true come before those for which
the predicate returns false. The partitioning is stable;
the relative ordering of the sequence is preserved.

swap Exchange two values.
swap ranges Exchanges elements in a range.

transform
Applies a function to a range of elements and stores
the outcome in a new sequence.

unique
unique copy

Eliminates duplicate elements from a range.

upper bound
Finds the last point in a sequence that is not greater
than some value.

Table 14.5: The STL Algorithms (continued)

EXAMPLES

1. Two of the simplest algorithms are count() and count if(). Their general forms are
shown here:

template <class InIter , class T>

size_t count(InIter start , InIter end , const T &val);

template <class InIter , class T>

size_t count(InIter start , InIter end , UnPred pfn);

The count() algorithm returns the number of elements in the sequence beginning at
start and ending at end that match val. The count if() algorithm returns the number
of elements in the sequence beginning at start and ending at end for which the unary
predicate pfn returns true.

The following program demonstrates count() and count if().

392

INTRODUCING THE STANDARD TEMPLATE LIBRARY
14.6. ALGORITHMS

// Demonstrates count and count_if

#include <iostream >

#include <vector >

#include <algorithm >

using namespace std;

/*

This is a unary predicate that determines

if a value is even.

*/

bool even(int x)

{

return !(x%2);

}

int main()

{

vector <int > v;

int i;

for(i=0; i<20; i++)

{

if(i%2)

v.push_back (1);

else

v.push_back (2);

}

cout << "Sequence: ";

for(i=0; i<v.size(); i++)

cout << v[i] << " ";

cout << endl;

int n;

n = count(v.begin (), v.end(), 1);

cout << n << " elements are 1\n";

n = count_if(v.begin (), v.end(), even);

cout << n << " elements are even.\n";

return 0;

}

This program displays the following output:

Sequence: 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

10 elements are 1

10 elements are even.

The program begins by creating a 20-element vector that contains alternating 1s and 2s.
Next, count() is used to count the number of 1s. Then, count if() counts the number
of elements that are even. Notice how the unary predicate even() is coded. All unary

393

TEACH YOURSELF
C++

predicates receive as a parameter an object that is of the same type as that stored in the
container upon which the predicate is operating. The predicate must then return a true
or false result based upon this object.

2. Sometimes it is useful to generate a new sequence that consists of only certain items from
an original sequence. One algorithm that does this is remove copy(). Its general form
is shown here:

template <class InIter , class OutIter , class T>

OutIter remove_copy(InIter start , InIter end ,

OutIter result , const T &val);

The remove copy() algorithm copies elements from the specified range that are equal
to val and puts the result into the sequence pointed to by result. It returns an iterator to
the end of the result. The output container must be large enough to hold the result.

The following program demonstrates remove copy(). It creates a sequence of 1s and 2s.
It then removes all of the 1s from the sequence.

// Demonstrates remove_copy.

#include <iostream >

#include <vector >

#include <algorithm >

using namespace std;

int main()

{

vector <int > v, v2(20);

int i;

for(i=0; i<20; i++)

{

if(i%2)

v.push_back (1);

else

v.push_back (2);

}

cout << "Sequence: ";

for(i=0; i<v.size(); i++)

cout << v[i] << " ";

cout << endl;

// Remove 1s

remove_copy(v.begin (), v.end(), v2.begin (), 1);

cout << "Result: ";

for(i=0; i<v2.size(); i++)

cout << v2[i] << " ";

cout << endl << endl;

return 0;

}

The output produced by this program is shown here.

394

INTRODUCING THE STANDARD TEMPLATE LIBRARY
14.6. ALGORITHMS

Sequence: 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

Result: 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0

3. An often useful algorithm is reverse(), which reverses a sequence. Its general form is

template <class BiIter >void reverse(BiIter start , BiIter end);

The reverse() algorithm reverses the order of the range specified by start and end.

The following program demonstrates reverse():

// Demonstrates reverse.

#include <iostream >

#include <vector >

#include <algorithm >

using namespace std;

int main()

{

vector <int > v;

int i;

for(i=0; i<10; i++)

v.push_back(i);

cout << "Initial: ";

for(i=0; i<v.size(); i++)

cout << v[i] << " ";

cout << endl;

reverse(v.begin(), v.end());

cout << "Reversed: ";

for(i=0; i<v.size(); i++)

cout << v[i] << " ";

return 0;

}

The output from this program is shown here.

Initial: 0 1 2 3 4 5 6 7 8 9

Reversed: 9 8 7 6 5 4 3 2 1 0

4. One of the more interesting algorithms is transform(), which modifies each element in
a range according to a function that you provide. The transform() algorithm has these
two general forms:

template <class InIter , class OutIter , class Func)

OutIter transform(InIter start , InIter end , OutIter result ,

Func unaryfunc);

template <class InIter1 , class InIter2 , class OutIter , class

Func >

OutIter transform(InIter1 , start1 , InIter1 end1 , InIter2

start2 , OutIter result , Func binaryfunc);

395

TEACH YOURSELF
C++

The transform() algorithm applies a function to a range of elements and stores the
outcome in result. In the first form, the range is specified by by start and end. The
function to be applied is specified by unaryfunc. This function receives the value of an
element in its parameter, and it must return the element’s transformation. In the second
form, the transformation is applied using a binary operator function that receives the
value of an element from the sequence to be transformed in its first parameter and an
element from a second sequence as its second parameter. Both versions return an iterator
to the end of the resulting sequence.

The following program uses a simple transformation function called xform() to square
the contents of a list. Notice that the resulting sequence is stored in the same list that
provided the original sequence.

// An example of the transform algorithm.

#include <iostream >

#include <list >

#include <algorithm >

using namespace std;

// A simple transformation function.

int xform(int i)

{

return i * i; // square original value

}

int main()

{

list <int > x1;

int i;

// put values into list

for(i=0; i<10; i++)

x1.push_back(i);

cout << "Original contents of x1: ";

list <int >:: iterator p = x1.begin();

while(p != x1.end())

{

cout << *p << " ";

p++;

}

cout << endl;

// transform x1

p = transform(x1.begin (), x1.end(), x1.begin (), xform);

cout << "Transformed contents of x1: ";

p = x1.begin ();

while(p != x1.end())

{

cout << *p << " ";

p++;

396

INTRODUCING THE STANDARD TEMPLATE LIBRARY
14.7. THE STRING CLASS

}

return 0;

}

The output produced by the program is shown here:

Original contents of x1: 0 1 2 3 4 5 6 7 8 9

Transformed contents of x1: 0 1 4 9 16 25 36 49 64 81

As you can see, each elements in the x1 list has been squared.

EXERCISES

1. The sort() algorithm has these forms:

template <class RandIter >void sort(RandIter start , RandIter

end);

template <class RandIter , class Comp >

void sort(RandIter start , RandIter end , Comp cmpfn);

It sorts the range specified by start and end. The second form allows you to specify a
comparison function that determines whether one element is less than another. Write a
program that demonstrates sort(). (Use either form you like.)

2. The merge() algorithm mergers two ordered sequences and places the result into a third.
One of its general forms is shown here:

template <class InIter1 , class InIter2 , class OutIter >

OutIter merge(InIter1 start1 , InIter1 end1 , InIter2 start2 ,

InIter2 end2 , OutIter result);

The sequences to be merged are defined by start1, end1 and start2, end2. The result is
put into the sequence pointed to by result. An iterator to the end of the resulting sequence
is returned. Demonstrate this algorithm.

14.7 THE STRING CLASS

As you know, C++ does not support a built-in string type, per se. It does, however, provide
two ways to handle strings. First, you can use the traditional, null-terminated character array
with which you are already familiar. This is sometimes referred to as a C string. The second
method is to use a class object of type string. This is the approach that is examined here.
Actually, the string class is a specialization of a more general template class called ba-
sic string. In fact, there are two specializations of basic string: string, which supports
8-bit character strings, and wstring, which supports wide character strings. Since 8-bit char-
acters are by far the most commonly used characters in normal programming, string is the
version of basic string examined here.
Before you look at the string class, it is important that you understand why it is part of the
C++ library. Standard classes have not been casually added to C++. In fact, a significant
amount of thought and debate has accompanied each new addition. Given that C++ already
contains some support for strings as null-terminated character arrays, it might at first seem that
the inclusion of the string class is an exception to this rule. However, this is actually far from
the truth. Here is why: Null-terminated strings cannot be manipulated by any of the standard
C++ operators, nor can they take part in normal C++ expressions. For example, consider this
fragment:

397

TEACH YOURSELF
C++

char s1[80], s2[80], s3 [80];

s1 = "one"; // can’t do

s2 = "two"; // can’t do

s3 = s1 + s2; // error , not allowed

As the comments show, in C++ it is not possible to use the assignment operator to give
a character array a new value (except during initialization), nor is it possible to use the +
operator to concatenate two strings. These operations must be written using library functions
as shown here:

strcpy(s1 , "one");

strcpy(s2 , "two");

strcpy(s3 , s1);

strcat(s3 , s2);

Since null-terminated character arrays are not technically data types in their own right, the
C++ operators cannot be applied to them. This makes even the most rudimentary string
operations clumsy. More than anything else, it is the inability to operate on null-terminated
strings using the standard C++ operators that has driven the development of a standard string
class. Remember, when you define a class in C++, you are defining a new data type that can
be fully integrated into the C++ environment. This, of course, means that the operators can
be overloaded relative to the new class. Therefore, with the addition of a standard string class,
it becomes possible to manage strings in the same way that any other type of data is managed:
through the use of operators.

There is, however, one other reason for the standard string class: safety. An inexperience or
careless programmer can very easily overrun the end of an array that holds a null-terminated
string. For example, consider the standard string copy function strcpy(). This function con-
tains no provision for checking the boundary of the target array. If the source array contains
more characters than the target array can hold, a program error or system crash is possible
(likely). As you will see, the standard string class prevents such errors.

In final analysis, there are three reasons for the inclusion of the standard string class: consis-
tency (a string now defines a data type), convenience (you can use the standard C++ operators),
and safety (array boundaries will not be overrun). Keep in mind that there is no reason that
you should abandon normal, null-terminated strings altogether. They are still the most efficient
way in which to implement strings. However, when speed is not an overriding concern, the new
string class gives you access to a safe and fully integrated way to manage strings.

Although not traditionally thought of as part of the STL, string is another container class
defined by C++. This means that it supports the algorithms described in the previous section.
However, strings have additional capabilities. To have access to the string class you must
include <string> in your program.

The string class is very large, with many constructors and member functions. Also, many
member functions have multiple overloaded forms. For this reason, it is not possible to look
at the entire contents of string in this chapter. Instead, we will examine several of its most
commonly used features. Once you have a general understanding of how string works, you will
be able to easily explore the rest of it one your own.

The string class supports several constructors. The prototype for three of its most commonly
used constructors are shown here.

string ();

string(const char *str);

string(const string &str);

398

INTRODUCING THE STANDARD TEMPLATE LIBRARY
14.7. THE STRING CLASS

The first form creates an empty string object. The second creates a string object from the
null-terminated string pointed to by str. This form provides a conversion from null-terminated
strings to string objects. The third form creates a string object from another string object.
A number of operators that apply to strings are defined for string objects, including those
listed in the following table:

Operator Meaning

= Assignment
+ Concatenation
+= Concatenation assignment
== Equality
!= Inequality
< Less than
<= Less than or equal
> Greater than
>= Greater than or equal
[] Subscripting
<< ¡¡ Output
>> Input

These operators allow the use of string objects in normal expressions and eliminate the need
for calls to functions such as strcpy() or strcat(), for example. In general, you can mix string
objects with normal, null-terminated strings in expressions. For example, a string object can
be assigned a null-terminated string.
The + operator can be used to concatenate a string object with another string object or a
string object with a C-style string. That is, the following variations are supported:

string + string

string + C-string

C-string + string

The + operator can also be used to concatenate a character onto the end of a string.
The string class defines the constant npos, which is usually -1. This constant represents the
length of the longest possible string.
Although most simple string operations can be accomplished with the string operators, more
complex or subtle ones are accomplished with string class member functions. Although there
are far too many to discuss in this chapter, we will examine several of the most common ones.
To assign one string to another, use the assign() function. Two of its forms are shown here:

string &assign(const string &strob , size_type start , size_type

num);

string &assign(const char *str , size_type num);

In the first form, num characters from strob beginning at the index specified by start will
be assigned to the invoking object. In the second form, the first num characters of the null-
terminated string str are assigned to the invoking object. In each case, a reference to the
invoking object is returned. Of course, it is much easier to use the = operator to assign one
entire string to another. You will need to use the assign() function only when assigning a
partial string.
You can append part of one string to another using the append() member function. Two of
its forms are shown here:

string &append(const string &strob , size_type start , size_type

num);

string &append(const char *str , size_type num);

399

TEACH YOURSELF
C++

In the first form, num characters from strob, beginning at the index specified by start, will
be appended to the invoking object. In the second form, the first num characters of the null-
terminated string str are appended to the invoking object. In each case, a reference to the
invoking object is returned. Of course, it is much easier to use the + operator to append one
entire string to another. You will need the append() function only when appending a partial
string.

You can insert or replace characters within a string using insert() and replace(). The proto-
types for their most common forms are shown here:

string &insert(size_type start , const string &strob);

string &insert(size_type start , const string &strob ,

size_type insStart , size_type num);

string &replace(size_type start , size_type num , const string &

strob);

string &replace(size_type start , size_type orgNum , const string &

strob ,

size_type replaceStart , size_type replaceNum);

The first form of insert() inserts strob into the invoking string at the index specified by start.
The second form of insert() inserts num, characters from strob beginning at insStart into the
invoking string at the index specified by start.

Beginning at start, the first form of replace() replaces num characters from the invoking string
with strob. The second form replaces orgNum characters, beginning at start in the invoking
string, with replaceNum characters from the string specified by strob beginning at replaceStart.
In both cases, a reference to the invoking object is returned.

You can remove characters from a string using erase(). One of its forms is shown here:

string &erase(size_type start=0, size_type num=npos);

It removes num characters from the invoking string beginning at start. A reference to the
invoking string is returned.

The string class provides several member functions, including find() and rfind(), that search
a string. Here are the prototypes for the most common versions of these two functions:

size_type find(const string &strob , size_type start =0) const;

size_type rfind(const string &strob , size_type start=npos) const;

Beginning at start, find() searches the invoking string for the first occurrence of the string
contained in strob. If the search string is found, find() returns the index at which the match
occurs within the invoking string. If no match is found, npos is returned. rfind() is the
opposite of find(). Beginning at start, it searches the invoking string in the reverse direction
for the first occurrence of the string contained in strob. (i.e., it finds the last occurrence of strob
within the invoking string.) If the search string is found, rfind() returns the index at which
the match occurs within the invoking string. If no match is found, npos is returned.

To compare the entire contents of one string object to those of another, you will normally use
the overloaded relational operators described earlier. However, if you want to compare a portion
of one string to another, you will need to use the compare() member function, shown here:

int compare(size_type start , size_type num , const string &strob)

const;

Here num characters in strob, beginning at start, will be compared against the invoking string.
If the invoking string is less than strob, compare() will return 0.

Although string objects are useful in their own right, there will be times when you will need
to obtain a null-terminated character array version of the string. For example, you might use a
string object to construct a file name. However, when opening a file, you will need to specify

400

INTRODUCING THE STANDARD TEMPLATE LIBRARY
14.7. THE STRING CLASS

a pointer to a standard null-terminated string. To solve this problem, the member function
c str() is provided. Its prototype is shown here:

const char *c_str() const;

This function returns a pointer to a null-terminated version of the string contained in the
invoking string object. The null-terminated string must not be altered. It is also not guaranteed
to be valid after any other operations have taken place on the string object.

Because it is a container, string supports the begin() and end() functions that return an
iterator to the start and end of a string, respectively. Also included is the size() function,
which returns the number of characters currently in a string.

EXAMPLES

1. Although the traditional, C-style strings have always been simple to use, the C++ string
class makes string handling extraordinarily easy. For example, with string objects you
can use the assignment operator to assign a quoted string to a string, the + operator
to concatenate strings, and the comparison operators to compare strings. The following
program illustrates these operations.

// A short string demonstration.

#include <iostream >

#include <string >

using namespace std;

int main()

{

string str1("Demonstrating Strings");

string str2("String Two");

string str3;

// assign a string

str3 = str1;

cout << str1 << "\n" << str3 << "\n";

// concatenate two strings

str3 = str1 + str2;

cout << str3 << "\n";

// compare strings

if(str3 > str1)

cout << "str3 > str1\n";

if(str3 == str1+str2)

cout << "str3 == str1+str2\n";

/*

A string object can also be

assigned a normal string.

*/

str1 = "This is a normal string .\n";

cout << str1;

// create a string object using another string object

401

TEACH YOURSELF
C++

string str4(str1);

cout << str4;

// input a string

cout << "Enter a string: ";

cin >> str4;

cout << str4;

return 0;

}

This program produces the following output:

Demonstrating Strings

Demonstrating Strings

Demonstrating StringsString Two

str3 >str1

str3 == str1+str2

This is a normal string.

This is a normal string.

Enter a string: Hello

Hello

As you can see, objects of type string can be manipulated with techniques similar to
those used to work with C++’s built-in data types. In fact, this is the main advantage to
the string class.

Notice the ease with which the string handling is accomplished. For example, the + is
used to concatenate strings and the > is used to compare two strings. To accomplish
these operations using C-style, null-terminated strings, you must use the less convenient
calls to the strcat() and strcmp() functions. Because C++ string objects can be freely
mixed with C-style null-terminated strings. there is no disadvantage to using them in
your program-and there are considerable benefits to be gained.

There is one other thing to notice in the preceding program: the sizes of the strings are not
specified. A string object is automatically sized to hold the string that it is given. Thus,
when you are assigning or concatenating strings, the target string will grow as needed to
accommodate the size of the new string. It is not possible to overrun the end of the string.
This dynamic aspect of string object is one of the reasons that they are considered better
than standard null-terminated strings (which are subject to boundary overruns).

2. The following program demonstrates the insert(), erase(), and replace() functions.

// Demonstrate insert (), erase(), and replace ().

#include <iostream >

#include <string >

using namespace std;

int main()

{

string str1("This is a test");

402

INTRODUCING THE STANDARD TEMPLATE LIBRARY
14.7. THE STRING CLASS

string str2("ABCDEFG");

cout << "Initial strings :\n";

cout << "str1: " << str1 << endl;

cout << "str2: " << str2 << "\n\n";

// demonstrate insert ()

cout << "Insert str2 into str1:\n";

str1.insert(5, str2);

cout << str1 << "\n\n";

// demonstrate erase()

cout << "Remove 7 characters from str1:\n";

str1.erase(5, 7);

cout << str1 << "\n\n";

// demonstrate replace

cout << "Replace 2 characters in str1 with str2:\n";

str1.replace(5, 2, str2);

cout << str1 << endl;

return 0;

}

The output produced by this program is shown here:

Initial strings:

str1: This is a test

str2: ABCDEFG

Insert str2 into str1:

This ABCDEFGis a test

Remove 7 characters from str1:

This is a test

Replace 2 characters in str1 with str2:

This ABCDEFG a test

3. Since string defines a data type, it is possible to create containers that hold objects of
type string. For example, here is a better way to write the word/opposite program shown
in Example 3 of section 14.5.

// A map of word opposites , using strings.

#include <iostream >

#include <map >

#include <string >

using namespace std;

int main()

{

403

TEACH YOURSELF
C++

map <string , string > m;

int i;

m.insert(pair <string , string >("yes", "no"));

m.insert(pair <string , string >("up", "down"));

m.insert(pair <string , string >("left", "right"));

m.insert(pair <string , string >("good", "bad"));

string s;

cout << "Enter word: ";

cin >> s;

map <string , string >:: iterator p;

p = m.find(s);

if(p != m.end())

cout << "Opposite: " << p->second;

else

cout << "Word not in map\n";

return 0;

}

EXERCISES

1. Using objects of type string store the following strings in a list.

one two three four five
six seven eight nine ten

Next, sort the list. Finally, display the sorted list.

2. Since string is a container, it can be used with the standard algorithms. Create a program
that inputs a string from the user. Then, using count(), report how many e’s are in the
string.

3. Modify your answer to Exercise 2 so that it reports the number of characters that are
lowercase. (Hint: use count if().)

4. The string class is a specialization of what template class?

SKILLS CHECK

Mastery Skills Check

At this point you should be able to perform the following exercises and answer the questions.

1. How does the STL make it easier for you to create more reliable programs?

2. Define a container, an iterator, and an algorithm as they relate to the STL.

3. Write a program that creates a ten-element vector that contains the numbers 1 through
10. Next, copy only the even elements from this vector into a list.

404

INTRODUCING THE STANDARD TEMPLATE LIBRARY
SKILLS CHECK

4. Give on advantage of using the string data type. Give one disadvantage.

5. What is a predicate?

6. On your own, recode your answer to Exercise 2 in Section 14.5 so that it uses string.

7. Begin exploring the STL function objects. To get started, examine the two standard
classes unary function and binary function, which aid in the construction of function
objects.

8. Study the STL documentation that comes with your compiler. You will find several
interesting features and techniques.

Cumulative Skills Check

This section checks how well you have integrated material in this chapter with that from the
preceding chapter.

1. You have come a long way since Chapter 1. Take some time to skim through the book
again. As you do so, think about ways you can improve the examples (especially those
in the first six chapters) so that they take advantage of all the features of C++ you have
learned.

2. Programming is learned best by doing. Write many C++ programs. Try to exercise those
features of C++ that are unique to it.

3. Continue to explore the STL. In the future, many programming tasks will be framed in
terms of the STL because often a program can be reduced to manipulations of containers
by algorithms.

4. Finally, remember: C++ gives you unprecedented power. It is important that you learn
to use this power wisely. Because this power, C++ lets you push the limits of your
programming ability. However, if this power is misused, you can also create programs that
are hard to understand, nearly impossible to follow, and extremely difficult to maintain.
C++ is a powerful too. But, like any other tool, it is only as good as the person using it.

405

TEACH YOURSELF
C++

This Page Intentionally Left Blank.

why?
There’s an article on Wikipedia about it.

Go check it out!, nerd.

406

A
A Few More Differences Between

C and C++

407

TEACH YOURSELF
C++

For the most part, C++ is a superset of ANSI-standard C, and virtually all C programs are
also C++ programs. However, a few differences do exist, several of which were mentioned

in Chapter 1. Here are a few more that you should be aware of:

ä A small but potentially important difference between C and C++ is that in C, a character
constant is automatically elevated to an integer, whereas in C++, it is not.

ä In C, it is not an error to declare a global variable several times, even though it is a bad
programming practice. In C++, this is an error.

ä In C, an identifier will have at least 31 significant characters. In C++, all characters are
considered significant. However, from a practical point of view, extremely long identifiers
are unwieldy and are seldom needed.

ä In C, you can call main() from within a program, although this would be unusual. In
C++, this is not allowed.

ä In C, you cannot take the address of a register variable. In C++, you can.

ä In C, the type wchar t is defined with a typedef. In C++, wchar t is a keyword.

408

B
Answers

409

TEACH YOURSELF
C++

1.3 EXERCISES

1. #include <iostream >

using namespace std;

int main()

{

double hours , wage;

cout << "Enter hours worked: ";

cin >> hours;

cout << "Enter wage per hour: ";

cin >> wage;

cout << "Pay is $" << wage * hours;

return 0;

}

2. #include <iostream >

using namespace std;

int main()

{

double feet;

do

{

cout << "Enter feet (0 to quit): ";

cin >> feet;

cout << "feet * 12 << " inches\n";

}

while(feet != 0.0);

return 0;

}

3. /*

This program computes the lowest

common denominator.

*/

#include <iostream >

using namespace std;

int main()

{

int a, b, d, min;

cout << "Enter two numbers: ";

410

ANSWERS
1.4 EXERCISES

cin >> a >> b;

min = a > b ? b : a;

for(d = 2; d<min; d++)

if(((a%d)==0) && ((b%d)==0))

break;

if(d==min)

{

cout << "No common denominators\n";

return 0;

}

cout << "The lowest common denominator is " << d << " \n"

;

return 0;

}

1.4 EXERCISES

1. The comment, although strange, is valid.

1.5 EXERCISES

2. #include <iostream >

#include <cstring >

using namespace std;

class card

{

char title [80]; // book title

char author [40]; // author

int number; // number in library

public:

void store(char *t, char *name , int num);

void show();

};

void card:: store(char *t, char *name , int num)

{

strcpy(title , t);

strcpy(author , name);

number = num;

}

void card::show()

{

cout << "Title: " << title << "\n";

cout << "Author: " << author << "\n";

cout << "Number on hand: " << number << "\n";

411

TEACH YOURSELF
C++

}

int main()

{

card book1 , book2 , book3;

book1.store("Dune", "Frank Herbert", 2);

book2.store("The Foundation Trilogy", "Isaac Asimov", 2);

book3.store("The Rainbow", "D. H. Lawerence", 1);

book1.show();

book2.show();

book3.show();

return 0;

}

3. #include <iostream >

using namespace std;

#define SIZE 100

class q_type

{

int queue[SIZE]; // holds the queue

int head , tail; // indices of head and tail

public:

void init(); // initialize

void q(int num); // store

int deq(); // retrieve

};

// Initialize

void q_type ::init()

{

head = tail = 0;

}

// Put value on the queue.

void q_type ::q(int num)

{

if(tail +1== head || (tail +1== SIZE && !head))

{

cout << "Queue is full\n";

return;

}

tail ++;

if(tail==SIZE)

tail = 0; // cycle around

queue[tail] = num;

}

412

ANSWERS
1.6 EXERCISES

// Remove a value from a queue.

int q_type ::deq()

{

if(head == tail)

{

cout << "Queue is empty\n";

return 0; // or some other error indicator

}

head ++;

if(head==SIZE)

head = 0; // cycle around

return queue[head];

}

int main()

{

q_type q1, q2;

int i;

q1.init();

q2.init();

for(i=1; i <=10; i++)

{

q1.q(i);

q2.q(i*i);

}

for(i=1; i <=10; i++)

{

cout << "Dequeue 1: " << q1.deq() << "\n";

cout << "Dequeue 2: " << q2.deq() << "\n";

}

return 0;

}

1.6 EXERCISES

1. The function f() is not prototyped.

1.7 EXERCISES

1. #include <iostream >

#include <cmath >

using namespace std;

// Overload sroot() for integers , longs , and doubles.

int sroot(int i);

413

TEACH YOURSELF
C++

long sroot(long i);

double sroot(double i);

int main()

{

cout << "Square root of 90.34 is : " << sroot (90.34);

cout << "\n";

cout << "Square root of 90L is : " << sroot (90L);

cout << "\n";

cout << "Square root of 90 is : " << sroot (90);

cout << "\n";

return 0;

}

// Return square root of integer.

int sroot(int i)

{

cout << "computing integer root\n";

return (int) sqrt((double) i);

}

// Return square root of long.

long sroot(long i)

{

cout << "computing long root\n";

return (long) sqrt((double) i);

}

// Return square root of double.

double sroot(double i)

{

cout << "computing double root\n";

return sqrt(i);

}

2. The functions atof(), atoi(), atol() cannot be overloaded because they differ only in
the type of data they return. Function overloading requires that either the type or the
number of arguments differs.

3. // Overload the min() function.

#include <iostream >

#include <cctype >

using namespace std;

char min(char a, char b);

int min(int a, int b);

double min(double a, double b);

int main()

{

414

ANSWERS
1.7 EXERCISES

cout << "Min is: " << min(’x’, ’a’) << "\n";

cout << "Min is: " << min(10, 20) << "\n";

cout << "Min is: " << min (0.2234 , 99.2) << "\n";

return 0;

}

// min() for chars

char min(char a, char b)

{

return tolower(a)<tolower(b) ? a : b;

}

// min() for ints

int min(int a, int b)

{

return a<b ? a : b;

}

// min() for doubles

double min(double a, double b)

{

return a<b ? a : b;

}

4. #include <iostream >

#include <cstdlib >

using namespace std;

// Overload sleep to accept integer or char * argument

void sleep(int n);

void sleep(char *n);

// Change this value to fit your processor speed.

#define DELAY 100000

int main()

{

cout << ".";

sleep (3);

cout << ".";

sleep("2");

cout << ".";

return 0;

}

// Sleep() with integer argument.

void sleep(int n)

{

long i;

415

TEACH YOURSELF
C++

for(; n; n--)

for(i=0; i<DELAY; i++);

}

// Sleep() with char * argument.

void sleep(char *n)

{

long i;

int j;

j = atoi(n);

for(; j; j--)

for(i=0; i<DELAY; i++);

}

MASTERY SKILLS CHECK: Chapter 1

1. Polymorphism is the mechanism by which one general interface can be used to access many
specific implementations. Encapsulation provides a protected linkage between code and
its related data. Access to encapsulated routines can be tightly controlled, thus preventing
unwanted tampering. Inheritance is the process by which one object can acquire the traits
of another. Inheritance is used to support a system of hierarchical classification.

2. You can include comments in a C++ by using either the normal C-style comments or the
C++-specific single-line comments.

3. #include <iostream >

using namespace std;

int main()

{

int b, e, r;

cout << "Enter base: ";

cin >> b;

cout << "Enter exponent: ";

cin >> e;

r = 1;

for(; e; e--)

r = r * b;

cout << "Result: " << r;

return 0;

}

4. #include <iostream >

#include <cstring >

using namespace std;

416

ANSWERS
MASTERY SKILLS CHECK: Chapter 1

// Overload string reversal function.

void rev_str(char *s); // reverse string in place

void rev_str(char *in , char *out); // put reversal into out

int main()

{

char s1[80], s2 [80];

strcpy(s1, "This is a test");

rev_str(s1 , s2);

cout << s2 << "\n";

rev_str(s1);

cout << s1 << "\n";

return 0;

}

// Reverse string , put result in s.

void rev_str(char *s)

{

char temp [80];

int i, j;

for(i=strlen(s)-1, j=0; i>=0; i--, j++)

temp[j] = s[i];

temp[j] = ’\0’; // null -terminate result

strcpy(s, temp);

}

// Reverse string , put result into out.

void rev_str(char *in , char *out)

{

int i, j;

for(i=strlen(in)-1, j=0; i>=0; i--, j++)

out[j] = in[i];

out[j] = ’\0’; // null -terminate result

}

5. #include <iostream.h>

int f(int a);

int main()

{

cout << f(10);

417

TEACH YOURSELF
C++

return 0;

}

int f(int a)

{

return a * 3.1416;

}

6. The bool data type stores Boolean values. The only values an object of type bool can
have are true and false.

REVIEW SKILLS CHECK: Chapter 2

1. #include <iostream >

#include <cstring >

using namespace std;

int main()

{

char s[80];

cout << "Enter a string: ";

cin >> s;

cout << "Length: " << strlen(s) << "\n";

return 0;

}

2. #include <iostream >

#include <cstring >

using namespace std;

class addr

{

char name [40];

char street [40];

char city [30];

char state [3];

char zip [10];

public:

void store(char *n, char *s, char *c, char *t, char *z);

void display ();

};

void addr:: store(char *n, char *s, char *c, char *t, char *z)

{

strcpy(name , n);

strcpy(street , s);

strcpy(city , c);

strcpy(state , t);

418

ANSWERS
REVIEW SKILLS CHECK: Chapter 2

strcpy(zip , z);

}

void addr:: display ()

{

cout << name << "\n";

cout << street << "\n";

cout << city << "\n";

cout << state << "\n";

cout << zip << "\n\n";

}

int main()

{

addr a;

a.store("C. B. Turkle", "11 Pinetree Lane", "Wausau", "In

", "46576");

a.display ();

return 0;

}

3. #include <iostream >

using namespace std;

int rotate(int i);

long rotate(long i);

int main()

{

int a;

long b;

a = 0x8000;

b = 8;

cout << rotate(a);

cout << "\n";

cout << rotate(b);

return 0;

}

int rotate(int i)

{

int x;

if(i & 0x8000)

x = 1;

419

TEACH YOURSELF
C++

else

x = 0;

i = i << 1;

i += x;

return i;

}

long rotate(long i)

{

int x;

if(i & 0x80000000)

x = 1;

i = i << 1;

i += x;

return 0;

}

4. The integer i is private to myclass and cannot be accessed inside main().

2.1 EXERCISES

1. #include <iostream >

using namespace std;

#define SIZE 100

class q_type

{

int queue[SIZE]; // holds the queue

int head , tail; // indices of head and tail

public:

q_type (); // constructor

void q(int num); // store

int deq(); // retrieve

};

// Constructor

q_type :: q_type ()

{

head = tail = 0;

}

// Put value on the queue.

void q_type ::q(int num)

{

if(tail +1== head || (tail +1== SIZE && !head))

420

ANSWERS
2.1 EXERCISES

{

cout << "Queue is full\n";

return;

}

tail ++;

if(tail==SIZE)

tail = 0; // cycle around

queue[tail] = num;

}

// Remove a value from a queue.

int q_type ::deq()

{

if(head == tail)

{

cout << "Queue is empty\n";

return 0; // or some other error indicator

}

head ++;

if(head==SIZE)

head = 0; // cycle around

return queue[head];

}

int main()

{

q_type q1, q2;

int i;

for(i=1; i <=10; i++)

{

q1.q(i);

q2.q(i*i);

}

for(i=1; i <=10; i++)

{

cout << "Dequeue 1: " << q1.deq() << "\n";

cout << "Dequeue 2: " << q2.deq() << "\n";

}

return 0;

}

2. // Stopwatch emulator

#include <iostream >

#include <ctime >

using namespace std;

class stopwatch

{

421

TEACH YOURSELF
C++

double begin , end;

public:

stopwatch ();

~stopwatch ();

void start();

void stop();

void show();

};

stopwatch :: stopwatch ()

{

begin = end = 0.0;

}

stopwatch ::~ stopwatch ()

{

cout << "Stopwatch object being destroyed ...";

show();

}

void stopwatch :: start()

{

begin = (double) clock () / CLOCKS_PER_SEC;

}

void stopwatch ::stop()

{

end = (double) clock() / CLOCKS_PER_SEC;

}

void stopwatch ::show()

{

cout << "Elapsed time: " << end - begin;

cout << "\n";

}

int main()

{

stopwatch watch;

long i;

watch.start ();

for(i=0; i <320000; i++); // time a for loop

watch.stop();

watch.show();

return 0;

}

3. A constructor cannot have a return type.

422

ANSWERS
2.2 EXERCISES

2.2 EXERCISES

1. // Dynamically allocated stack.

#include <iostream >

#include <cstdlib >

using namespace std;

// Declare a stack class for characters

class stack

{

char *stck; // holds the stack

int tos; // index of top of stack

int size; // size of stack

public:

stack(int s); // constructor

~stack (); // destructor

void push(char ch); // push character on stack

char pop(); // pop character from stack

};

// Initialize the stack

stack ::stack(int s)

{

cout << "Constructing a stack\n";

tos = 0;

stck = (char *) malloc(s);

if(!stck)

{

cout << "Allocation error\n";

exit (1);

}

size = s;

}

stack ::~ stack ()

{

free(stck);

}

// Push a character.

void stack::push(char ch)

{

if(tos==size)

{

cout << "Stack is full\n";

return;

}

stck[tos] = ch;

tos ++;

}

423

TEACH YOURSELF
C++

// Pop a character.

char stack::pop()

{

if(tos ==0)

{

cout << "Stack is empty\n";

return 0; // return null on empty stack

}

tos --;

return stck[tos];

}

int main()

{

// Create two stacks that are automatically initialized.

stack s1(10), s2(10);

int i;

s1.push(’a’);

s2.push(’x’);

s1.push(’b’);

s2.push(’y’);

s1.push(’c’);

s2.push(’z’);

for(i=0; i<3; i++)

cout << "Pop s1: " << s1.pop() << "\n";

for(i=0; i<3; i++)

cout << "Pop s2: " << s2.pop() << "\n";

return 0;

}

2. #include <iostream >

#include <ctime >

using namespace std;

class t_and_d

{

time_t systime;

public:

t_and_d(time_t t); // constructor

void show();

};

t_and_d :: t_and_d(time_t t)

{

systime = t;

}

void t_and_d ::show()

424

ANSWERS
2.2 EXERCISES

{

cout << ctime(& systime);

}

int main()

{

time_t x;

x = time(NULL);

t_and_d ob(x);

ob.show();

return 0;

}

3. #include <iostream >

using namespace std;

class box

{

double l, w, h;

double volume;

public:

box(double a, double b, double c);

void vol();

};

box::box(double a, double b, double c)

{

l = a;

w = b;

h = c;

volume = l * w * h;

}

void box::vol()

{

cout << "Volume is: " << volume << "\n";

}

int main()

{

box x(2.2, 3.97, 8.09), y(1.0, 2.0, 3.0);

x.vol();

y.vol();

return 0;

425

TEACH YOURSELF
C++

}

2.3 EXERCISE

1. #include <iostream >

using namespace std;

class area_c1

{

public:

double height;

double width;

};

class rectangle : public area_c1

{

public:

rectangle(double h, double w);

double area();

};

class isosceles : public area_c1

{

public:

isosceles(double h, double w);

double area();

};

rectangle :: rectangle(double h, double w)

{

height = h;

width = w;

}

isosceles :: isosceles(double h, double w)

{

height = h;

width = w;

}

double rectangle ::area()

{

return width * height;

}

double isosceles ::area()

{

return 0.5 * width * height;

}

int main()

426

ANSWERS
2.5 EXERCISES

{

rectangle b(10.0 , 5.0);

isosceles i(4.0, 6.0);

cout << "Rectangle: " << b.area() << "\n";

cout << "Triangle: " << i.area() << "\n";

return 0;

}

2.5 EXERCISES

1. // Stack class using a structure.

#include <iostream >

using namespace std;

#define SIZE 10

// Declare a stack class for characters using a structure.

struct stack

{

stack (); // constructor

void push(char ch); // push character on stack

char pop(); // pop character from stack

private:

char stck[SIZE]; // holds the stack

int tos; // index of top of stack

};

// Initialize the stack

stack ::stack ()

{

cout << "Constructing a stack\n";

tos = 0;

}

// Push a character.

void stack::push(char ch)

{

if(tos==SIZE)

{

cout << "Stack is full\n";

return;

}

stck[tos] = ch;

tos ++;

}

// Pop a character.

char stack::pop()

{

427

TEACH YOURSELF
C++

if(tos ==0)

{

cout << "Stack is empty\n";

return 0; // return null on empty stack

}

tos --;

return stck[tos];

}

int main()

{

// Create two stacks that are automatically initialized.

stack s1, s2;

int i;

s1.push(’a’);

s2.push(’x’);

s1.push(’b’);

s2.push(’y’);

s1.push(’c’);

s2.push(’z’);

for(i=0; i<3; i++)

cout << "Pop s1: " << s1.pop() << "\n";

for(i=0; i<3; i++)

cout << "Pop s2: " << s2.pop() << "\n";

return 0;

}

2. #include <iostream >

using namespace std;

union swapbytes

{

unsigned char c[2];

unsigned i;

swapbytes(unsigned x);

void swp();

};

swapbytes :: swapbytes(unsigned x)

{

i = x;

}

void swapbytes ::swp()

{

unsigned char temp;

temp = c[0];

428

ANSWERS
2.6 EXERCISES

c[0] = c[1];

c[1] = temp;

}

int main()

{

swapbytes ob(1);

ob.swp();

cout << ob.i;

return 0;

}

3. An anonymous union is the syntactic mechanism that allows two variables to share the
same memory space. The members of an anonymous union are accessed directly, without
reference to an object. They are at the same scope level as the union itself.

2.6 EXERCISES

1. #include <iostream >

using namespace std;

// Overload abs() three ways:

// abs() for ints

inline int abs(int n)

{

cout << "In integer abs()\n";

return n<0 ? -n : n;

}

// abs() for longs

inline long abs(long n)

{

cout << "In long abs()\n";

return n<0 ? -n : n;

}

// abs() for doubles

inline double abs(double n)

{

cout << "In double abs()\n";

return n<0 ? -n : n;

}

int main()

{

cout << "Absolute value of -10: " << abs(-10) << "\n";

cout << "Absolute value of -10L: " << abs(-10L) << "\n";

429

TEACH YOURSELF
C++

cout << "Absolute value of -10.01: " << abs (-10.01) << "\

n";

return 0;

}

2. The function might not be able to be in-lined because it contains a for loop. Some
compilers will not in-line functions containing loops.

2.7 EXERCISES

1. #include <iostream >

using namespace std;

#define SIZE 10

// Declare a stack class for characters

class stack

{

char stck[SIZE]; // holds the stack

int tos; // index of top of stack

public:

stack ()

{

tos = 0;

}

void push(char ch)

{

if(tos==SIZE)

{

cout << "Stack is full\n";

return;

}

stck[tos] = ch;

tos ++;

}

char pop()

{

if(tos ==0)

{

cout << "Stack is empty\n";

return 0; // return null on empty stack

}

tos --;

return stck[tos];

}

};

int main()

{

// Create two stacks that are automatically initialized.

430

ANSWERS
2.7 EXERCISES

stack s1, s2;

int i;

s1.push(’a’);

s2.push(’x’);

s1.push(’b’);

s2.push(’y’);

s1.push(’c’);

s2.push(’z’);

for(i=0; i<3; i++)

cout << "Pop s1: " << s1.pop() << "\n";

for(i=0; i<3; i++)

cout << "Pop s2: " << s2.pop() << "\n";

return 0;

}

2. #include <iostream >

#include <cstring >

#include <cstdlib >

using namespace std;

class strtype

{

char *p;

int len;

public:

strtype(char *ptr)

{

len = strlen(ptr);

p = (char *) malloc(len+1);

if(!p)

{

cout << "Allocation error\n";

exit (1);

}

strcpy(p, ptr);

}

~strtype ()

{

cout << "Freeing p\n";

free(p);

}

void show()

{

cout << p << " - lengthj: " << len;

cout << ’\n’;

}

};

431

TEACH YOURSELF
C++

int main()

{

strtype s1("This is a test."), s2("I like C++.");

s1.show();

s2.show();

return 0;

}

MASTERY SKILLS CHECK: Chapter 2

1. A constructor is the function that is called when an object is created. A destructor is the
function that is called when an object is destroyed.

2. #include <iostream >

using namespace std;

class line

{

int len;

public:

line(int l);

};

line::line(int l)

{

len = l;

int i;

for(i=0; i<len; i++)

cout << ’*’;

}

int main()

{

line l(10);

return 0;

}

3. 10 1000000 -0.0009

4. #include <iostream >

using namespace std;

class area_c1

{

public:

double height;

432

ANSWERS
MASTERY SKILLS CHECK: Chapter 2

double width;

};

class rectangle : public area_c1

{

public:

rectangle(double h, double w){ height = h; width = w; }

double area() { return width * height; }

};

class isosceles : public area_c1

{

public:

isosceles(double h, double w){ height = h; width = w; }

double area(){ return 0.5 * width * height; }

};

class cylinder : public area_c1

{

public:

cylinder(double h, double w){ height = h; width = w; }

double area()

{

return (2 * 3.1416 * (width /2) * (width /2)) *

(3.1416 * width * height);

}

};

int main()

{

rectangle b(10.0 , 5.0);

isosceles i(4.0, 6.0);

cylinder c(3.0, 4.0);

cout << "Rectangle: " << b.area() << "\n";

cout << "Triangle: " << i.area() << "\n";

cout << "Cylinder: " << c.area() << "\n";

return 0;

}

5. An in-line function’s code is expanded in line. This means that the function is not actually
called. This avoids the overhead associated with the function call and return mechanism.
Its advantage is that it increases the execution speed. Its disadvantage is that it can
increase the size of the program.

6. #include <iostream >

using namespace std;

class myclass

{

int i, j;

433

TEACH YOURSELF
C++

public:

myclass(int x, int y) { i = x; j = y; }

void show() { cout << i << ’ ’ << j; }

};

int main()

{

myclass count(2, 3);

count.show();

return 0;

}

7. In a class, members are private by default. In a structure, members are public by default.

8. Yes. It defines an anonymous union.

CUMULATIVE SKILLS CHECK: Chapter 2

1. #include <iostream >

using namespace std;

class prompt

{

int count;

public:

prompt(char *s) { cout << s; cin >> count; }

~prompt ();

};

prompt ::~ prompt ()

{

int i, j;

for(i=0; i<count; i++)

{

cout << ’\a’;

for(j=0; j <32000; j++) ; // delay

}

}

int main()

{

prompt ob("Enter a number: ");

return 0;

}

2. #include <iostream >

434

ANSWERS
CUMULATIVE SKILLS CHECK: Chapter 2

using namespace std;

class ftoi

{

double feet;

double inches;

public:

ftoi(double f);

};

ftoi::ftoi(double f)

{

feet = f;

inches = feet * 12;

cout << feet << " is " << inches << " inches .\n";

}

int main()

{

ftoi a(12.0) , b(99.0);

return 0;

}

3. #include <iostream >

#include <cstdlib >

using namespace std;

class dice

{

int val;

public:

void roll();

};

void dice::roll()

{

val = (rand() % 6) + 1; // generate 1 through 6

cout << val << "\n";

}

int main()

{

dice one , two;

one.roll();

two.roll();

one.roll();

two.roll();

one.roll();

two.roll();

435

TEACH YOURSELF
C++

return 0;

}

REVIEW SKILLS CHECK: Chapter 3

1. The constructor is called widgit() and the destructor is called ∼widgit().

2. The constructor function is called when an object is created (that is, when an object
comes into existence). The destructor is called when an object is destroyed.

3. class Mars : public planet

{

// ...

};

4. You can expand a function in line either by preceding its definition with the inline specifier
or by including its definition within a class declaration.

5. An in-line function must be defined before it is first used. Other common restrictions
include the following: It cannot contain any loops. It must not be recursive. It cannot
contain a goto or a switch statement. It cannot contain any static variables.

6. sample ob(100, ’X’);

3.1 EXERCISES

1. The assignment statement x = y is wrong because cl1 and cl2 are two different types of
classes, and objects of differing class types cannot be assigned.

2. #include <iostream >

using namespace std;

#define SIZE 100

class q_type

{

int queue[SIZE]; // holds the queue

int head , tail; // indices of head and tail

public:

q_type (); // constructor

void q(int num); // store

int deq(); // retrieve

};

// Constructor

q_type :: q_type ()

{

head = tail = 0;

}

// Put value on the queue.

436

ANSWERS
3.1 EXERCISES

void q_type ::q(int num)

{

if(tail +1== head || (tail +1== SIZE && !head))

{

cout << "Queue is full\n";

return;

}

tail ++;

if(tail==SIZE)

tail = 0; // cycle around

queue[tail] = num;

}

// Remove a value from a queue.

int q_type ::deq()

{

if(head == tail)

{

cout << "Queue is empty\n";

return 0; // or some other error indicator

}

head ++;

if(head==SIZE)

head = 0; // cycle around

return queue[head];

}

int main()

{

q_type q1, q2;

int i;

for(i=1; i <=10; i++)

q1.q(i);

// assign one queue to another

q2 = q1;

// show that both have the same contents

for(i=1; i <=10; i++)

cout << "Dequeue 1: " << q1.deq() << "\n";

for(i=1; i <=10; i++)

cout << "Dequeue 2: " << q2.deq() << "\n";

return 0;

}

3. If memory to hold a queue is dynamically allocated, assigning one queue to another causes
the dynamic memory allocated to the queue on the left side of the assignment statement
to be lost and the memory allocated to the queue on the right side to be freed twice when

437

TEACH YOURSELF
C++

the objects are destroyed. Either of these two conditions is an unacceptable error.

3.2 EXERCISES

1. #include <iostream >

using namespace std;

#define SIZE 10

// Declare a stack class for characters

class stack

{

char stck[SIZE]; // holds the stack

int tos; // index of top of stack

public:

stack (); // constructor

void push(char ch); // push character on stack

char pop(); // pop character from stack

};

// Initialize the stack

stack ::stack ()

{

cout << "Constructing a stack\n";

tos = 0;

}

// Push a character.

void stack::push(char ch)

{

if(tos==SIZE)

{

cout << "Stack is full\n";

return;

}

stck[tos] = ch;

tos ++;

}

// Pop a character.

char stack::pop()

{

if(tos ==0)

{

cout << "Stack is empty\n";

return 0; // return null on empty stack

}

tos --;

return [tos];

}

438

ANSWERS
3.2 EXERCISES

void showstack(stack o);

int main()

{

stack s1;

int i;

s1.push(’a’);

s1.push(’b’);

s1.push(’c’);

showstack(s1);

// s1 in main is still existent

cout << "s1 stack still contains this: \n";

for(i=0; i<3; i++)

cout << s1.pop() << "\n";

return 0;

}

// Display the contents of a stack.

void showstack(stack o)

{

char c;

// when this statement ends , the o stack is empty

while(c=o.pop())

cout << c << ’\n’;

}

This program displays the following:

Constructing a stack

c

b

a

Stack is empty

s1 stack still contains this:

c

b

a

2. The memory used to hold the integer pointed to by p in object o that is used to call
neg() is freed when the copy of o is destroyed when neg() terminates, even though this
memory is still needed by o inside main().

439

TEACH YOURSELF
C++

3.3 EXERCISES

1. #include <iostream >

using namespace std;

class who

{

char name;

public:

who(char c)

{

name = c;

cout << "Constructing who #";

cout << name << ’\n’;

}

~who() { cout << "Destructing who #" << name << "\n"; }

};

who makewho ()

{

who temp(’B’);

return temp;

}

int main()

{

who ob(’A’);

makewho ();

return 0;

}

2. There are several situations in which it would be improper to return an object. Here is one:
if an object opens a disk file when it is created and closes that file when it is destroyed, if
that object is returned from a function, the fill will be closed when the temporary object
is destroyed.

3.4 EXERCISES

1. #include <iostream >

using namespace std;

class pr2; // forward declaration

class pr1

{

int printing;

// ...

public:

pr1() { printing = 0; }

440

ANSWERS
3.4 EXERCISES

void set_print(int status) { printing = status; }

// ...

friend int inuse(pr1 o1, pr2 o2);

};

class pr2

{

int printing;

// ...

public:

pr2() { printing = 0; }

void set_print(int status) { printing = status; }

// ...

friend int inuse(pr1 o1, pr2 o2);

};

// Return true if printer is in use.

int inuse(pr1 o1 , pr2 o2)

{

if(o1.printing || o2.printing)

return 1;

else

return 0;

}

int main()

{

pr1 p1;

pr2 p2;

if(! inuse(p1 , p2))

cout << "Printer idle\n";

cout << "Setting p1 to printing ...\n";

p1.set_print (1);

if(inuse(p1 , p2))

cout << "Now printer in use.\n";

cout << "Turn off p1...\n";

p1.set_print (0);

if(! inuse(p1 , p2))

cout << "Printer idle\n";

cout << "Turn on p2...\n";

p2.set_print (1);

if(inuse(p1 , p2))

cout << "Now printer in use.\n";

return 0;

}

441

TEACH YOURSELF
C++

MASTERY SKILLS CHECK: Chapter 3

1. For one object to be assigned to another, both must be of the same class type.

2. The trouble with the assignment of ob1 to ob2 is that the memory pointed to by ob2’s
initial value of p is now lost because this value is overwritten by the assignment. This
memory thus becomes impossible to free, and the memory pointed to by ob1’s p is freed
twice when it is destroyed-possibly causing damage to the dynamic allocation system.

3. int light(planet p)

{

return p.get_miles () / 186000;

}

4. Yes.

5. // Load a stack with the alphabet.

#include <iostream >

using namespace std;

#define SIZE 27

// Declare a stack class for characters

class stack

{

char stck[SIZE]; // holds the stack

int tos; // index of top of stack

public:

stack (); // constructor

void push(char ch); // push character on stack

char pop(); // pop character from stack

};

// Initialize the stack

stack ::stack ()

{

cout << "Constructing a stack\n";

tos = 0;

}

// Push a character.

void stack::push(char ch)

{

if(tos==SIZE)

{

cout << "Stack is full\n";

return;

}

stck[tos] = ch;

tos ++;

}

442

ANSWERS
MASTERY SKILLS CHECK: Chapter 3

// Pop a character.

char stack::pop()

{

if(tos ==0)

{

cout << "Stack is empty\n";

return 0; // return null on empty stack

}

tos --;

return stck[tos];

}

void showstack(stack o);

stack loadstack ();

int main()

{

stack s1;

s1 = loadstack ();

showstack(s1);

return 0;

}

// Display the contents of a stack.

void showstack(stack o)

{

char c;

// when this statement ends , the o stack is empty

while(c=o.pop())

cout << c << ’\n’;

}

// Load a stack with the letters of the alphabet.

stack loadstack ()

{

stack t;

char c;

for(c = ’a’; c <= ’z’; c++)

t.push(c);

return t;

}

6. When passing an object to a function or returning an object from a function, temporary
copies of the object are created that will be destroyed when the function terminates.
When a temporary copy of an object is destroyed, the destructor function might destroy
something that is needed elsewhere in the program.

7. A friend is a nonmember function that is granted access to the private members of the

443

TEACH YOURSELF
C++

class for which it is a friend.

CUMULATIVE SKILLS CHECK: Chapter 3

1. // Load a stack with the alphabet.

#include <iostream >

#include <cctype >

using namespace std;

#define SIZE 27

// Declare a stack class for characters

class stack

{

char stck[SIZE]; // holds the stack

int tos; // index of top of stack

public:

stack (); // constructor

void push(char ch); // push character on stack

char pop(); // pop character from stack

};

// Initialize the stack

stack ::stack ()

{

cout << "Constructing a stack\n";

tos = 0;

}

// Push a character.

void stack::push(char ch)

{

if(tos==SIZE)

{

cout << "Stack is full\n";

return;

}

stck[tos] = ch;

tos ++;

}

// Pop a character.

char stack::pop()

{

if(tos ==0)

{

cout << "Stack is empty\n";

return 0; // return null on empty stack

}

tos --;

return stck[tos];

444

ANSWERS
CUMULATIVE SKILLS CHECK: Chapter 3

}

void showstack(stack o);

stack loadstack ();

stack loadstack(int upper);

int main()

{

stack s1, s2, s3;

s1 = loadstack ();

showstack(s1);

// get uppercase letters

s2 = loadstack (1);

showstack(s2);

// use lowercase letters

s3 = loadstack (0);

showstack(s3);

return 0;

}

// Display the contents of a stack.

void showstack(stack o)

{

char c;

// when this statement ends , the o stack is empty

while(c=o.pop())

cout << c << ’\n’;

}

// Load a stack with the letters of the alphabet.

stack loadstack ()

{

stack t;

char c;

for(c = ’a’; c <= ’z’; c++)

t.push(c);

return t;

}

/*

Load a stack with the letters of the alphabet. Uppercase

letters if upper if 1; lowercase otherwise.

*/

stack loadstack(int upper)

{

445

TEACH YOURSELF
C++

stack t;

char c;

if(upper)

c = ’A’;

else

c = ’a’;

for(; toupper(c) <= ’Z’; c++)

t.push(c);

return t;

}

2. #include <iostream >

#include <cstring >

#include <cstdlib >

using namespace std;

class strtype

{

char *p;

int len;

public:

strtype(char *ptr);

~strtype ();

void show();

friend char *get_string(strtype *ob);

};

strtype :: strtype(char *ptr)

{

len = strlen(ptr);

p = (char *) malloc(len+1);

if(!p)

{

cout << "Allocation error\n";

exit (1);

}

strcpy(p, ptr);

}

strtype ::~ strtype ()

{

cout << "Freeing p\n";

free(p);

}

void strtype ::show()

{

cout << p << " - lengthj: " << len;

cout << ’\n’;

446

ANSWERS
CUMULATIVE SKILLS CHECK: Chapter 3

}

char *get_string(strtype *ob)

{

return ob->p;

}

int main()

{

strtype s1("This is a test.");

char *s;

s1.show();

// get pointer to string

s = get_string (&s1);

cout << "Here is string contained in s1: ";

cout << s << "\n";

return 0;

}

3. The outcome of the experiment is as follows: Yes, data from the base class is also copied
when an object of a derived class is assigned to another object of the same derived class.
Here is a program that demonstrates this fact:

#include <iostream >

using namespace std;

class base

{

int a;

public:

void load_a(int n) { a = n; }

int get_a() { return a; }

};

class derived : public base

{

int b;

public:

void load_b(int n) { b = n; }

int get_b() { return b; }

};

int main()

{

derived ob1 , ob2;

ob1.load_a (5);

ob1.load_b (10);

447

TEACH YOURSELF
C++

// assign ob1 to ob2

ob2 = ob1;

cout << "Here is ob1’s a and b: ";

cout << ob1.get_a() << " " << ob1.get_b() << "\n";

cout << "Here is ob2’s a and b: ";

cout << ob2.get_a() << " " << ob2.get_b() << "\n";

/*

As you can probably guess , the output is the same for

each object.

*/

return 0;

}

REVIEW SKILLS CHECK: Chapter 4

1. When one object is assigned to another of the same type, the current values of all data
members of the object on the right are assigned to the corresponding data members on
the left.

2. Trouble can occur when one object is assigned to another if that assignment overwrites
important data already existing in the target object. For example, a pointer to dynamic
memory or to an open file can be overwritten and, therefore, lost.

3. When an object is passed to a function, a copy is made. However, the copy’s destructor
is called when the object is destroyed by the termination of the function.

4. The violation of the separation between an argument and its copy when passed to a
parameter can be caused by several destructor, that memory will also be lost to the argu-
ment. In general, if the destructor function destroys anything that the original argument
requires, damage to the argument will occur.

5. #include <iostream >

using namespace std;

class summation

{

int num ;

long sum ; // summation of num

public:

void set_sum (int n);

void show_sum ()

{

cout << num << " summed is " << sum << "\n";

}

};

void summation :: set_sum (int n)

{

448

ANSWERS
REVIEW SKILLS CHECK: Chapter 4

int i;

num = n;

sum = 0;

for (i =1; i <=n; i ++)

sum += i;

}

summation make_sum ()

{

int i;

summation temp;

cout << "Enter number: ";

cin >> i;

temp.set_sum(i);

return temp;

}

int main()

{

summation s;

s = make_sum ();

s.show_sum ();

return 0;

}

6. For some compilers, in-line functions cannot contain loops.

7. #include <iostream >

using namespace std;

class myclass

{

int num;

public:

myclass (int x)

{

num = x;

}

friend int isneg(myclass ob);

};

int isneg(myclass ob)

{

return (ob.num <0) ? 1 : 0;

}

449

TEACH YOURSELF
C++

int main()

{

myclass a(-1), b(2);

cout << isneg(a) << ’ ’ << isneg(b);

cout << ’\n’;

return 0;

}

8. Yes, a friend function can be friends with more than one class.

4.1 EXERCISES

1. #include <iostream >

using namespace std;

class letters

{

char ch;

public:

letters(char c) { ch = c; }

char get_ch () { return ch; }

};

int main()

{

letters ob[10] = { ’a’, ’b’, ’c’, ’d’, ’e’, ’f’,

’g’, ’h’, ’i’, ’j’ };

int i;

for(i=0; i<10; i++)

cout << ob[i]. get_ch () << ’ ’;

cout << "\n";

return 0;

}

2. #include <iostream >

using namespace std;

class squares

{

int num , sqr ;

public:

squares (int a, int b) { num = a; sqr = b; }

void show () { cout << num << ’ ’ << sqr << "\n"; }

};

int main()

450

ANSWERS
4.1 EXERCISES

{

squares ob[10] = {

squares(1, 1),

squares(2, 4),

squares(3, 9),

squares(4, 16),

squares(5, 25),

squares(6, 36),

squares(7, 49),

squares(8, 64),

squares(9, 81),

squares (10, 100),

};

int i;

for(i=0; i<10; i++)

ob[i].show();

return 0;

}

3. #include <iostream >

using namespace std;

class letters

{

char ch;

public:

letters(char c) { ch = c; }

char get_ch () { return ch; }

};

int main()

{

letters ob[10] = {

letters(’a’),

letters(’b’),

letters(’c’),

letters(’d’),

letters(’e’),

letters(’f’),

letters(’g’),

letters(’h’),

letters(’i’),

letters(’j’),

};

int i;

for(i=0; i<10; i++)

cout << ob[i]. get_ch () << ’ ’;

451

TEACH YOURSELF
C++

cout << "\n";

return 0;

}

4.2 EXERCISES

1. // Display in reverse order.

include <iostream >

using namespace std;

class samp

{

int a, b;

public :

samp (int n, int m) { a = n; b = m; }

int get_a () { return a; }

int get_b () { return b; }

};

int main ()

{

samp ob [4] = {

samp(1 , 2),

samp(3 , 4),

samp(5 , 6),

samp(7 , 8)

};

int i;

samp *p;

p = &ob[3]; // get address of last element

for(i=0; i<4; i++)

{

cout << p->get_a() << ’ ’;

cout << p->get_b() << ’\n’;

p--; // advance to previous object

}

cout << "\n";

return 0;

}

2. /*

Create a two -dimensional array of objects.

Access via a pointer.

*/

include <iostream >

452

ANSWERS
4.3 EXERCISE

using namespace std ;

class samp

{

int a;

public :

samp (int n) { a = n; }

int get_a () { return a; }

};

int main ()

{

samp ob [4][2] = { 1, 2,

3, 4,

5, 6,

7, 8,

};

int i;

samp *p;

p = (samp *) ob;

for(i=0; i<4; i++)

{

cout << p->get_a() << ’ ’;

p++;

cout << p->get_a() << "\n";

p++;

}

cout << "\n";

return 0;

}

4.3 EXERCISE

1. // Use this pointer.

#include <iostream >

using namespace std;

class myclass

{

int a, b;

public:

myclass(int n, int m) { this ->a = n; this ->b = m; }

int add() { return this ->a + this ->b; }

void show();

};

void myclass ::show()

{

453

TEACH YOURSELF
C++

int t;

t = this ->add(); // call member function

cout << t << "\n";

}

int main()

{

myclass ob(10, 14);

ob.show();

return 0;

}

4.4 EXERCISES

1. #include <iostream >

using namespace std;

int main()

{

float *f;

long *l;

char *c;

f = new float;

l = new long;

c = new char;

if(!f || !l || !c)

{

cout << "Allocation error.";

return 1;

}

*f = 10.102;

*l = 100000;

*c = ’A’;

cout << *f << ’ ’ << *l << ’ ’ << *c;

cout << ’\n’;

delete f;

delete l;

delete c;

return 0;

}

454

ANSWERS
4.4 EXERCISES

2. #include <iostream >

#include <cstring >

using namespace std;

class phone

{

char name [40];

char number [14];

public:

void store(char *n, char *num);

void show();

};

void phone:: store(char *n, char *num)

{

strcpy(name , n);

strcpy(number , num);

}

void phone::show()

{

cout << name << ": " << number;

cout << "\n";

}

int main()

{

phone *p;

p = new phone;

if(!p)

{

cout << "Allocation error.";

return 1;

}

p->store("Isaac Newton", "111 555 -2323");

p->show();

delete p;

return 0;

}

3. On failure, new will either return a null pointer or generate an exception. You must check
your compiler’s documentation to determine which approach is used. In Standard C++,
new generates an exception by default.

455

TEACH YOURSELF
C++

4.5 EXERCISES

1. char *p;

p = new char [100];

// ...

strcpy(p, "This is a test");

2. #include <iostream >

using namespace std;

int main()

{

double *p;

p = new double (-123.0987);

cout << *p << ’\n’;

return 0;

}

4.6 EXERCISES

1. #include <iostream >

using namespace std;

void rneg(int &i); // reference version

void pneg(int *i); // pointer version

int main()

{

int i = 10;

int j = 20;

rneg(i);

pneg(&j);

cout << i << ’ ’ << j << ’\n’;

return 0;

}

// using a reference parameter

void rneg(int &i)

{

i = -i;

}

// using a pointer parameter

void pneg(int *i)

456

ANSWERS
4.7 EXERCISE

{

*i = -*i;

}

2. When triple() is called, the address of d is explicitly obtained with the & operator. This
is neither necessary nor legal. When a reference parameter is used, the argument is not
preceded by the &.

3. The address of a reference parameter is automatically passed to the function. You need
not obtain the address manually. Passing by reference is often faster than passing by
value. No copy of argument is generated. Therefor, there is no chance of a side effect
occurring because the copy’s destructor is called.

4.7 EXERCISE

1. In the original program, the object is passed to show() by value. Thus, a copy is made.
When show() returns, the copy is destroyed and its destructor is called. This causes p
to be released, but the memory pointed to it is still needed by the arguments to show().
Here is a corrected version that uses a reference parameter to prevent a copy from being
made when the function is called:

// This program is now fixed.

#include <iostream >

#include <cstring >

#include <cstdlib >

using namespace std;

class strtype

{

char *p;

public:

strtype(char *s);

~strtype () { delete [] p; }

char *get() { return p; }

};

strtype :: strtype(char *s)

{

int l;

l = strlen(s)+1;

p = new char [l];

if(!p)

{

cout << "Allocation error\n";

exit (1);

}

strcpy(p, s);

}

// Fix by using a reference parameter.

457

TEACH YOURSELF
C++

void show(strtype &x)

{

char *s;

s = x.get();

cout << s << "\n";

}

int main()

{

strtype a("Hello"), b("There");

show(a);

show(b);

return 0;

}

4.8 EXERCISES

1. // A simple bounded two -dimensional array example.

#include <iostream >

#include <cstdlib >

using namespace std;

class array

{

int isize , jsize;

int *p;

public:

array(int i, int j);

int &put(int i, int j);

int get(int i, int j);

};

array ::array(int i, int j)

{

p = new int [i*j];

if(!p)

{

cout << "Allocation error\n";

exit (1);

}

isize = i;

jsize = j;

}

// Put something into the array

int &array::put(int i, int j)

{

if(i<0 || i>= isize || j<0 || j>= jsize)

458

ANSWERS
MASTERY SKILLS CHECK: Chapter 4

{

cout << "Bounds error !!!\n";

exit (1);

}

return p[i*jsize + j]; // return reference to p[i]

}

// Get something from the array

int array::get(int i, int j)

{

if(i<0 || i>= isize || j<0 || j>= jsize)

{

cout << "Bounds error !!!\n";

exit (1);

}

return p[i*jsize + j]; // return character

}

int main()

{

array a(2, 3);

int i, j;

for(i=0; i<2; i++)

for(j=0; j<3; j++)

a.put(i, j) = i*j;

for(i=0; i<2; i++)

for(j=0; j<3; j++)

cout << a.get(i, j) << " ";

// generate out of bounds

a.put(10, 10);

return 0;

}

2. No. A reference returned by a function cannot be assigned to a pointer.

MASTERY SKILLS CHECK: Chapter 4

1. #include <iostream >

using namespace std;

class a_type

{

double a, b;

public:

a_type(double x, double y)

{

a = x;

459

TEACH YOURSELF
C++

b = y;

}

void show() { cout << a << ’ ’ << b << ’\n’; }

};

int main()

{

a_type ob [2][5] = {

a_type(1, 1), a_type(2, 2),

a_type(3, 3), a_type(4, 4),

a_type(5, 5), a_type(6, 6),

a_type(7, 7), a_type(8, 8),

a_type(9, 9), a_type (10, 10),

};

int i, j;

for(i=0; i<2; i++)

for(j=0; j<5; j++)

ob[i][j].show();

cout << ’\n’;

return 0;

}

#include <iostream >

using namespace std;

class a_type

{

double a, b;

public:

a_type(double x, double y)

{

a = x;

b = y;

}

void show() { cout << a << ’ ’ << b << ’\n’; }

};

int main()

{

a_type ob [2][5] = {

a_type(1, 1), a_type(2, 2),

a_type(3, 3), a_type(4, 4),

a_type(5, 5), a_type(6, 6),

a_type(7, 7), a_type(8, 8),

a_type(9, 9), a_type (10, 10),

};

a_type *p;

460

ANSWERS
MASTERY SKILLS CHECK: Chapter 4

p = (a_type *) ob;

int i, j;

for(i=0; i<2; i++)

{

for(j=0; j<5; j++)

{

p->show();

p++;

}

}

cout << ’\n’;

return 0;

}

2. The this pointer is a pointer that is automatically passed to a member function and that
points to the object that generated the call.

3. The general forms of new and delete are:

p_var = new type;

delete p_var;

When using new, you don’t need to use a type cast. The size of the object is automatically
determined; you don’t need to use sizeof0 Also, you don’t need to include <cstdlib> in
you program.

4. A reference is essentially an implicit pointer constant that is effectively a different name
for another variable or argument. One advantage of using a reference parameter is that
no copy of the argument is made.

5. #include <iostream >

using namespace std;

void recip(double &d);

int main()

{

double x = 100.0;

cout << "x is " << x << ’\n’;

recip(x);

cout << "Reciprocal is " << x << ’\n’;

return 0;

}

void recip(double &d)

461

TEACH YOURSELF
C++

{

d = 1/d;

}

CUMULATIVE SKILLS CHECK: Chapter 4

1. To access a member of an object by using a pointer, use the arrow (-> operator.

2. #include <iostream >

#include <cstring >

#include <cstdlib >

using namespace std;

class strtype

{

char *p;

int len;

public:

strtype(char *ptr);

~strtype ();

void show();

};

strtype :: strtype(char *ptr)

{

len = strlen(ptr);

p = new char [len +1];

if(!p)

{

cout << "Allocation error\n";

exit (1);

}

strcpy(p, ptr);

}

strtype ::~ strtype ()

{

cout << "Freeing p\n";

delete [] p;

}

void strtype ::show()

{

cout << p << " - length: " << len;

cout << ’\n’;

}

int main()

{

462

ANSWERS
REVIEW SKILLS CHECK: Chapter 5

strtype s1("This is a test."), s2("I like C++");

s1.show();

s2.show();

return 0;

}

REVIEW SKILLS CHECK: Chapter 5

1. A reference is a special type of pointer that is automatically dereferenced and that can be
used interchangeably with the object it is pointing to. There are three types of references:
parameter references, independent reference, and references that are returned by functions.

2. #include <iostream >

using namespace std;

int main()

{

float *f;

int *i;

f = new float;

i = new int;

if(!f || !i)

{

cout << "Allocation error\n";

return 1;

}

*f = 10.101;

*i = 100;

cout << *f << ’ ’ << *i << ’\n’;

delete f;

delete i;

return 0;

}

3. The general form of new that includes an initializer is shown here:

p_var = new type (initializer);

For example, this allocates an integer and gives it the value 10:

int *p;

p = new int (10);

463

TEACH YOURSELF
C++

4. #include <iostream >

using namespace std;

class samp

{

int x;

public:

samp(int n) { x = n; }

int getx() { return x; }

};

int main()

{

samp A[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

int i;

for(i=0; i<10; i++)

cout << A[i].getx() << ’ ’;

cout << ’\n’;

return 0;

}

5. Advantages: A reference parameter does not cause a copy of the object used in the call
to be made. A reference is often faster to pass than a value. The reference parameter
streamlines the call-by-reference syntax and procedure, reducing the chance for errors.

Disadvantages: Changes to a reference parameter open the possibility of side effects in
the calling routine.

6. No.

7. #include <iostream >

using namespace std;

void mag(long &num , long order);

int main()

{

long n = 4;

long o = 2;

cout << "4 raised to the 2nd order of magnitude is ";

mag(n, o);

cout << n << ’\n’;

return 0;

}

void mag(long &num , long order)

{

for(; order; order --)

464

ANSWERS
5.1 EXERCISES

num = num * 10;

}

5.1 EXERCISES

1. #include <iostream >

#include <cstring >

#include <cstdlib >

using namespace std;

class strtype

{

char *p;

int len;

public:

strtype ();

strtype(char *s, int l);

char *getstring () { return p; }

int getlength () { return len; }

};

strtype :: strtype ()

{

p = new char [255];

if(!p)

{

cout << "Allocation error\n";

exit (1);

}

*p = ’\0’; // null string

len = 255;

}

strtype :: strtype(char *s, int l)

{

if(strlen(s) >= l)

{

cout << "Allocating too little memory !\n";

exit (1);

}

p = new char [l];

if(!p)

{

cout << "Allocation error\n";

exit (1);

}

strcpy(p, s);

len = l;

}

465

TEACH YOURSELF
C++

int main()

{

strtype s1;

strtype s2("This is a test", 100);

cout << "s1: " << s1.getstring () << " - Length: ";

cout << s1.getlength () << ’\n’;

cout << "s2: " << s2.getstring () << " - Length: ";

cout << s2.getlength () << ’\n’;

return 0;

}

2. // Stopwatch emulator

#include <iostream >

#include <ctime >

using namespace std;

class stopwatch

{

double begin , end;

public:

stopwatch ();

stopwatch(clock_t t);

~stopwatch ();

void start();

void stop();

void show();

};

stopwatch :: stopwatch ()

{

begin = end = 0.0;

}

stopwatch :: stopwatch(clock_t t)

{

begin = (double) t / CLOCKS_PER_SEC;

end = 0.0;

}

stopwatch ::~ stopwatch ()

{

cout << "Stopwatch object being destroyed ...";

show();

}

void stopwatch :: start()

{

begin = (double) clock () / CLOCKS_PER_SEC;

466

ANSWERS
5.2 EXERCISES

}

void stopwatch ::stop()

{

end = (double) clock() / CLOCKS_PER_SEC;

}

void stopwatch ::show()

{

cout << "Elapsed time: " << end - begin;

cout << "\n";

}

int main()

{

stopwatch watch;

long i;

watch.start ();

for(i=0; i <320000; i++); // time a for loop

watch.stop();

watch.show();

// create object using initial value

stopwatch s2(clock());

for(i=0; i <250000; i++); // time a for loop

s2.stop();

s2.show();

return 0;

}

5.2 EXERCISES

1. The obj and temp objects are constructed normally. However, when temp is returned
by f(), a temporary object is made, and it is this temporary object that generates the call
to the copy constructor.

2. As the program is written, when an object is passed to getval() a bitwise copy is made.
When getval() returns and that copy is destroyed, the memory allocated to that object
(which is pointed to by p) is released. However, this is the same memory still required
by the object used in the call to getval(). The correct version of the program is shown
here. It uses a copy constructor to avoid this problem.

// This program is now fixed.

#include <iostream >

#include <cstdlib >

using namespace std;

class myclass

{

int *p;

467

TEACH YOURSELF
C++

public:

myclass(int i);

myclass(const myclass &o); // copy constructor

~myclass () { delete p; }

friend int getval(myclass o);

};

myclass :: myclass(int i)

{

p = new int;

if(!p)

{

cout << "Allocation error\n";

exit (1);

}

*p = i;

}

// Copy constructor

myclass :: myclass(const myclass &o)

{

p = new int; // allocate copy’s own memory

if(!p)

{

cout << "Allocation error\n";

exit (1);

}

*p = *o.p;

}

int getval(myclass o)

{

return *o.p; // get value

}

int main()

{

myclass a(1), b(2);

cout << getval(a) << " " << getval(b);

cout << "\n";

cout << getval(a) << " " << getval(b);

return 0;

}

3. A copy constructor is invoked when one object is used to initialize another. A normal
constructor is called when an object is created.

468

ANSWERS
5.4 EXERCISES

5.4 EXERCISES

1. #include <iostream >

#include <cstdlib >

using namespace std;

long mystrtol(const char *s, char **end , int base = 10)

{

return strtol(s, end , base);

}

int main()

{

long x;

char *s1 = "100234";

char *p;

x = mystrtol(s1, &p, 16);

cout << "Base 16: " << x << ’\n’;

x = mystrtol(s1, &p, 10);

cout << "Base 10: " << x << ’\n’;

x = mystrtol(s1, &p); // use default base of 10

cout << "Base 10: " << x << ’\n’;

return 0;

}

2. All parameters taking default arguments must appear to the right of those that do not.
That is, once you begin giving parameters defaults, all subsequent parameters must also
have defaults. In the question, q is not given a default.

3. Since cursor positioning functions differ from compiler to compiler and environment to en-
vironment, only one possible solution is shown. The following program works for Borland
C++ under a command-prompt environment.

// Note: This program is Borland C++-specific.

#include <iostream >

#include <conio.h>

using namespace std;

void myclreol(int len = -1);

int main()

{

int i;

gotoxy(1, 1);

for(i=0; i<24; i++)

cout << "abcdefghijklmnopqrstyvwxyz1234567890\n";

469

TEACH YOURSELF
C++

gotoxy(1, 2);

myclreol ();

gotoxy(1, 4);

myclreol (20);

return 0;

}

// Clear to end of line unless len parameter is specified.

void myclreol(int len)

{

int x, y;

x = wherex (); // get x position

y = wherey (); // get y position

if(len == -1)

len = 80-x;

int i = x;

for(; i<=len; i++)

cout << ’ ’;

gotoxy(x, y); // reset the cursor

}

4. A default argument cannot be another parameter or a local variable.

5.6 EXERCISE

1. #include <iostream >

using namespace std;

int dif(int a, int b)

{

return a-b;

}

float dif(float a, float b)

{

return a-b;

}

int main()

{

int (*p1)(int , int);

float (*p2)(float , float);

p1 = dif; // address of dif(int , int)

p2 = dif; // address of dif(float , float)

470

ANSWERS
MASTERY SKILLS CHECK: Chapter 5

cout << p1(10, 5) << ’ ’;

cout << p2(10.5, 8.9) << ’\n’;

return 0;

}

MASTERY SKILLS CHECK: Chapter 5

1. // Overload date() for time_t.

#include <iostream >

#include <cstdio > // included for sscanf ()

#include <ctime >

using namespace std;

class date

{

int day , month , year;

public:

date(char *str);

date(int m, int d, int y)

{

day = d;

month = m;

year = y;

}

// overload for parameter of type time_t

date(time_t t);

void show()

{

cout << month << ’/’ << day << ’/’;

cout << year << ’\n’;

}

};

date::date(char *str)

{

sscanf(str , "%d%*c%d%*c%d", &month , &day , &year);

}

date::date(time_t t)

{

struct tm *p;

p = localtime (&t); // convert to broken down time

day = p->tm_mday;

month = p->tm_mon;

year = p->tm_year;

}

int main()

{

471

TEACH YOURSELF
C++

// construct date object using string

date sdate("12/31/99");

// construct date object using integers

date idate(12, 31, 99);

/*

construct date object using time_t - this

creates an object using the system date

*/

date tdate(time(NULL));

sdate.show();

idate.show();

tdate.show();

return 0;

}

2. The class samp defines only one constructor, and this constructor requires an initializer.
Therefore, it is improper to declare an object of type samp without one. (That is, samp
x is an invalid declaration.)

3. One reason to overload a constructor is to provide flexibility, allowing you to choose the
most appropriate constructor in the specific instance. Another is to allow both initialized
and uninitialized objects to be declared. You might want to overload a constructor so
that dynamic arrays can be allocated.

4. The most common general form of a copy constructor is shown here:

classname (const classname &obj)

{

// body of constructor

}

5. A copy constructor is called when an initialization takes place-specifically, when one object
is explicitly used to initialize another, when an object is passed as a parameter to a
function, and when a temporary object is created when an object is returned by a function.

6. The overload keyword is obsolete. In early versions of C++ it was used to tell the
compiler that a function will be overloaded. It is not supported by modern compilers.

7. A default argument is a value that is given to a function parameter when no corresponding
argument appears when the function is called.

8. #include <iostream >

#include <cstring >

using namespace std;

void reverse(char *str , int count = 0);

int main()

{

char s1[] = "This is a test.";

472

ANSWERS
CUMULATIVE SKILLS CHECK: Chapter 5

char s2[] = "I like C++.";

reverse(s1); // reverses entire string

reverse(s2 , 7); // reverse first 7 chars

cout << s1 << ’\n’;

cout << s2 << ’\n’;

return 0;

}

void reverse(char *str , int count)

{

int i, j;

char temp;

if(! count)

count = strlen(str) - 1;

for(i=0, j=count; i<j; i++, j--)

{

temp = str[i];

str[i] = str[j];

str[j] = temp;

}

}

9. All parameters receiving default arguments must appear to the right of those that do not.

10. Ambiguity can be introduced by default type conversions, reference parameters, and de-
fault arguments.

11. It is ambiguous because the compiler cannot know which version of compute() to call.
Is it the first version, with divisor defaulting? Or is it the second version, which takes
only one parameter?

12. When you are obtaining the address of an overloaded function, it is the type specification
of the pointer that determines which function is used.

CUMULATIVE SKILLS CHECK: Chapter 5

1. #include <iostream >

using namespace std;

void order(int &a, int &b)

{

int t;

if(a<b)

return;

else // swap a and b

{

t = a;

473

TEACH YOURSELF
C++

a = b;

b = t;

}

}

int main()

{

int x=10, y=5;

cout << "x: " << x << ", y: " << y << ’\n’;

order(x, y);

cout << "x: " << x << ", y: " << y << ’\n’;

return 0;

}

2. The syntax for calling a function that takes a reference parameter is identical to the syntax
for calling a function that takes a value parameter.

3. A default argument is essentially a shorthand approach to function overloading because
the net result is the same.
For example,

int f(int a, int b = 0);

is functionally equivalent to these two overloaded functions:

int f(int a);

int f(int a, int b);

4. #include <iostream >

using namespace std;

class samp

{

int a;

public:

samp() { a = 0; }

samp(int n) { a = n; }

int get_a() { return a; }

};

int main()

{

samp ob(88);

samp obarray [10];

// ...

}

474

ANSWERS
REVIEW SKILLS CHECK: Chapter 6

5. Copy constructors are needed when you, the programmer, must control precisely how a
copy of an object is made. This is important only when the default bitwise copy creates
undesired side effects.

REVIEW SKILLS CHECK: Chapter 6

1. class myclass

{

int x, y;

public:

myclass(int i, int j) { x=i; y=j; }

myclass () { x=0; y=0; }

};

2. class myclass

{

int x, y;

public:

myclass(int i=0, int j=0) { x=i; y=j; }

};

3. Once default arguments have begun, a non-defaulting parameter cannot occur.

4. A function cannot be overloaded when the only difference is that one version takes a value
parameter and the other takes a reference parameter. (The compiler cannot tell them
apart.)

5. It is appropriate to use default arguments when there are one or more values that will
occur frequently. Is is inappropriate when there is no value or values that have a greater
likelihood of occurring.

6. No, because there is no way to initialize a dynamic array. This class has only one con-
structor, and it requires initializers.

7. A copy constructor is a special constructor that is called when one object initializes an-
other. This circumstance can occur in any of the following three ways: When one object
is explicitly used to initialize another, when an object is passed to a function, or when a
temporary object is created as a function return value.

6.2 EXERCISES

1. // Overload the * and / relative to coord class.

#include <iostream >

using namespace std;

class coord

{

int x, y; // coordinate values

public:

coord () { x=0; y=0; }

coord(int i, int j) { x=i; y=j; }

void get_xy(int &i, int &j) { i=x; j=y; }

475

TEACH YOURSELF
C++

coord operator *(coord ob2);

coord operator /(coord ob2);

};

// Overload * relative to coord class.

coord coord :: operator *(coord ob2)

{

coord temp;

temp.x = x * ob2.x;

temp.y = y * ob2.y;

return temp;

}

// Overload / relative to coord class.

coord coord :: operator /(coord ob2)

{

coord temp;

temp.x = x / ob2.x;

temp.y = y / ob2.y;

return temp;

}

int main()

{

coord o1(10, 10), o2(5, 3), o3;

int x, y;

o3 = o1 * o2;

o3.get_xy(x, y);

cout << "(o1*o2) X: " << x << ", Y: " << y << "\n";

o3 = o1 / o2;

o3.get_xy(x, y);

cout << "(o1/o2) X: " << x << ", Y: " << y << "\n";

return 0;

}

2. The overloading of the % operator is inappropriate because its operation is unrelated to
the traditional use.

6.3 EXERCISE

1. // Overload the < and > relative to coord class.

#include <iostream >

using namespace std;

476

ANSWERS
6.4 EXERCISES

class coord

{

int x, y; // coordinate values

public:

coord () { x=0; y=0; }

coord(int i, int j) { x=i; y=j; }

void get_xy(int &i, int &j) { i=x; j=y; }

int operator <(coord ob2);

int operator >(coord ob2);

};

// Overload < relative to coord class.

int coord::operator <(coord ob2)

{

return x<ob2.x && y<ob2.y;

}

// Overload > relative to coord class.

int coord::operator >(coord ob2)

{

return x>ob2.x && y>ob2.y;

}

int main()

{

coord o1(10, 10), o2(5, 3);

int x, y;

if(o1 >o2)

cout << "o1 > o2\n";

else

cout << "o1 <= o2\n";

if(o1 <o2)

cout << "o1 < o2\n";

else

cout << "o1 >= o2\n";

return 0;

}

6.4 EXERCISES

1. // Overload the -- relative to coord class.

#include <iostream >

using namespace std;

class coord

{

int x, y; // coordinate values

public:

477

TEACH YOURSELF
C++

coord () { x=0; y=0; }

coord(int i, int j) { x=i; y=j; }

void get_xy(int &i, int &j) { i=x; j=y; }

coord operator --(); // prefix

coord operator --(int notused); // postfix

};

// Overload prefix -- for coord class.

coord coord ::operator --()

{

x--;

y--;

return *this;

}

// Overload postfix -- for coord class.

coord coord ::operator --(int notused)

{

x--;

y--;

return *this;

}

int main()

{

coord o1(10, 10);

int x, y;

o1 --; // decrement an object

o1.get_xy(x, y);

cout << "(o1 --) X: " << x << ", Y: " << y << "\n";

--o1; // decrement an object

o1.get_xy(x, y);

cout << "(--o1) X: " << x << ", Y: " << y << "\n";

return 0;

}

2. // Overload the + relative to coord class.

#include <iostream >

using namespace std;

class coord

{

int x, y; // coordinate values

public:

coord () { x=0; y=0; }

coord(int i, int j) { x=i; y=j; }

void get_xy(int &i, int &j) { i=x; j=y; }

coord operator +(coord ob2); // binary plus

478

ANSWERS
6.5 EXERCISES

coord operator +(); // unary plus

};

// Overload + relative to coord class.

coord coord :: operator +(coord ob2)

{

coord temp;

temp.x = x + ob2.x;

temp.y = y + ob2.y;

return temp;

}

// Overload unary + for coord class.

coord coord :: operator +()

{

if(x<0)

x = -x;

if(y<0)

y = -y;

return *this;

}

int main()

{

coord o1(10, 10), o2(-2, -2);

int x, y;

o1 = o1 + o2; // addition

o1.get_xy(x, y);

cout << "(o1+o2) X: " << x << ", Y: " << y << "\n";

o2 = +o2; // absolute value

o2.get_xy(x, y);

cout << "(+o2) X: " << x << ", Y: " << y << "\n";

return 0;

}

6.5 EXERCISES

1. // Overload the - and / relative to coord class.

#include <iostream >

using namespace std;

class coord

{

int x, y; // coordinate values

public:

479

TEACH YOURSELF
C++

coord () { x=0; y=0; }

coord(int i, int j) { x=i; y=j; }

void get_xy(int &i, int &j) { i=x; j=y; }

friend coord operator -(coord ob1 , coord ob2);

friend coord operator /(coord ob1 , coord ob2);

};

// Overload - relative to coord class using friend.

coord operator -(coord ob1 , coord ob2)

{

coord temp;

temp.x = ob1.x - ob2.x;

temp.y = ob1.y - ob2.y;

return temp;

}

// Overload / relative to coord class using friend.

coord operator /(coord ob1 , coord ob2)

{

coord temp;

temp.x = ob1.x / ob2.x;

temp.y = ob1.y / ob2.y;

return temp;

}

int main()

{

coord o1(10, 10), o2(5, 3), o3;

int x, y;

o3 = o1 - o2;

o3.get_xy(x, y);

cout << "(o1 -o2) X: " << x << ", Y: " << y << "\n";

o3 = o1 / o2;

o3.get_xy(x, y);

cout << "(o1/o2) X: " << x << ", Y: " << y << "\n";

return 0;

}

2. // Overload the * for ob*int and int*ob.

#include <iostream >

using namespace std;

class coord

{

480

ANSWERS
6.5 EXERCISES

int x, y; // coordinate values

public:

coord () { x=0; y=0; }

coord(int i, int j) { x=i; y=j; }

void get_xy(int &i, int &j) { i=x; j=y; }

friend coord operator *(coord ob1 , int i);

friend coord operator *(int i, coord ob2);

};

// Overload * one way.

coord operator *(coord ob1 , int i)

{

coord temp;

temp.x = ob1.x * i;

temp.y = ob1.y * i;

return temp;

}

// Overload * another way.

coord operator *(int i, coord ob2)

{

coord temp;

temp.x = ob2.x * i;

temp.y = ob2.y * i;

return temp;

}

int main()

{

coord o1(10, 10), o2;

int x, y;

o2 = o1 * 2; // ob * int

o2.get_xy(x, y);

cout << "(o1*2) X: " << x << ", Y: " << y << "\n";

o2 = 3 * o1;

o2.get_xy(x, y);

cout << "(3*o1) X: " << x << ", Y: " << y << "\n";

return 0;

}

3. By using friend functions, you make it possible to have a built-in type as the left operand.
When member functions are used, the left operand must be an object of the class for
which the operator is defined.

4. // Overload the -- relative to coord class using a friend.

481

TEACH YOURSELF
C++

#include <iostream >

using namespace std;

class coord

{

int x, y; // coordinate values

public:

coord () { x=0; y=0; }

coord(int i, int j) { x=i; y=j; }

void get_xy(int &i, int &j) { i=x; j=y; }

friend coord operator --(coord &ob); // prefix

friend coord operator --(coord &ob , int notused); //

postfix

};

// Overload -- (prefix) for coord class using a friend.

coord operator --(coord &ob)

{

ob.x--;

ob.y--;

return ob;

}

// Overload -- (postfix) for coord class using a friend.

coord operator --(coord &ob, int notused)

{

ob.x--;

ob.y--;

return ob;

}

int main()

{

coord o1(10, 10);

int x, y;

--o1; // decrement an object

o1.get_xy(x, y);

cout << "(--o1) X: " << x << ", Y: " << y << "\n";

o1 --;

o1.get_xy(x, y);

cout << "(o1 --) X: " << x << ", Y: " << y << "\n";

return 0;

}

6.6 EXERCISE

1. #include <iostream >

#include <cstdlib >

482

ANSWERS
6.6 EXERCISE

using namespace std;

class dynarray

{

int *p;

int size;

public:

dynarray(int s);

int &put(int i);

int get(int i);

dynarray &operator =(dynarray &ob);

};

// Constructor

dynarray :: dynarray(int s)

{

p = new int [s];

if(!p)

{

cout << "Allocation error\n";

exit (1);

}

size = s;

}

// Store an element.

int &dynarray ::put(int i)

{

if(i<0 || i>=size)

{

cout << "Bounds error!\n";

exit (1);

}

return p[i];

}

// Get an element

int dynarray ::get(int i)

{

if(i<0 || i>=size)

{

cout << "Bounds error!\n";

exit (1);

}

return p[i];

}

// Overload = for dynarray

483

TEACH YOURSELF
C++

dynarray &dynarray :: operator =(dynarray &ob)

{

int i;

if(size!=ob.size)

{

cout << "Cannot copy arrays of differing size!\n";

exit (1);

}

for(i = 0; i<size; i++)

p[i] = ob.p[i];

return *this;

}

int main()

{

int i;

dynarray ob1 (10), ob2 (10), ob3 (100);

ob1.put (3) = 10;

i = ob1.get(3);

cout << i << ’\n’;

ob2 = ob1;

i = ob2.get(3);

cout << i << ’\n’;

// generates an error

ob1 = ob3; // !!!

return 0;

}

6.7 EXERCISES

1. #include <iostream >

#include <cstring >

#include <cstdlib >

using namespace std;

class strtype

{

char *p;

int len;

public:

strtype(char *s);

~strtype ()

{

484

ANSWERS
6.7 EXERCISES

cout << "Freeing " << (unsigned) p << ’\n’;

delete [] p;

}

char *get() { return p; }

strtype &operator =(strtype &ob);

char &operator [](int i);

};

strtype :: strtype(char *s)

{

int l ;

l = strlen(s)+1;

p = new char [l];

if(!p)

{

cout << "Allocation error\n";

exit (1);

}

len = l;

strcpy(p, s);

}

// Assign an object.

strtype &strtype :: operator =(strtype &ob)

{

// see if more memory is needed

if(len < ob.len) // need to allocate more memory

{

delete [] p;

p = new char (ob.len);

if(!p)

{

cout << "Allocation error\n";

exit (1);

}

}

len = ob.len;

strcpy(p, ob.p);

return *this;

}

// Index characters in string.

char &strtype :: operator [](int i)

{

if(i<0 || i>len -1)

{

cout << "\nIndex value of ";

cout << i << " is out -of -bounds .\n";

exit (1);

485

TEACH YOURSELF
C++

}

return p[i];

}

int main()

{

strtype a("Hello"), b("There");

cout << a.get() << ’\n’;

cout << b.get() << ’\n’;

a = b; // now p is not overwritten

cout << a.get() << ’\n’;

cout << b.get() << ’\n’;

// access characters using array indexing

cout << a[0] << a[1] << a[2] << ’\n’;

// assign characters using array indexing

a[0] = ’X’;

a[1] = ’Y’;

a[2] = ’Z’;

cout << a.get() << ’\n’;

return 0;

}

2. #include <iostream >

#include <cstdlib >

using namespace std;

class dynarray

{

int *p;

int size;

public:

dynarray(int s);

dynarray &operator =(dynarray &ob);

int &operator [](int i);

};

// Constructor

dynarray :: dynarray(int s)

{

p = new int [s];

if(!p)

{

cout << "Allocation error\n";

486

ANSWERS
6.7 EXERCISES

exit (1);

}

size = s;

}

// Overload = for dynarray

dynarray &dynarray :: operator =(dynarray &ob)

{

int i;

if(size!=ob.size)

{

cout << "Cannot copy arrays of differing size!\n";

exit (1);

}

for(i = 0; i<size; i++)

p[i] = ob.p[i];

return *this;

}

// Overload []

int &dynarray :: operator [](int i)

{

if(i<0 || i>size)

{

cout << "\nIndex value of ";

cout << i << " is out -of -bounds .\n";

exit (1);

}

return p[i];

}

int main()

{

int i;

dynarray ob1 (10), ob2 (10), ob3 (100);

ob1 [3] = 10;

i = ob1 [3];

cout << i << "\n";

ob2 = ob1;

i = ob2 [3];

cout << i << "\n";

// generates an error

ob1 = ob3; // arrays differ sizes

487

TEACH YOURSELF
C++

return 0;

}

MASTERY SKILLS CHECK: Chapter 6

1. // Overload << and

#include <iostream >

using namespace std;

class coord

{

int x, y; // coordinate values

public:

coord () { x=0; y=0; }

coord(int i, int j) { x=i; y=j; }

void get_xy(int &i, int &j) { i=x; j=y; }

coord operator <<(int i);

coord operator >>(int i);

};

// Overload <<.

coord coord ::operator <<(int i)

{

coord temp;

temp.x = x << i;

temp.y = y << i;

return temp;

}

// Overload >>.

coord coord ::operator >>(int i)

{

coord temp;

temp.x = x >> i;

temp.y = y >> i;

return temp;

}

int main()

{

coord o1(4, 4), o2;

int x, y;

o2 = o1 << 2; // ob << int

o2.get_xy(x, y);

cout << "(o1 <<2) X: " << x << ", Y: " << y << ’\n’;

488

ANSWERS
MASTERY SKILLS CHECK: Chapter 6

o2 = o1 >> 2; // ob >> int

o2.get_xy(x, y);

cout << "(o1 >>2) X: " << x << ", Y: " << y << ’\n’;

return 0;

}

2. #include <iostream >

using namespace std;

class three_d

{

int x, y, z;

public:

three_d(int i, int j, int k)

{

x = i; y = j; z = k;

}

three_d () { x=0; y=0; z=0; }

void get(int &i, int &j, int &k)

{

i = x; j = y; k = z;

}

three_d operator +(three_d ob2);

three_d operator -(three_d ob2);

three_d operator ++();

three_d operator --();

};

three_d three_d :: operator +(three_d ob2)

{

three_d temp;

temp.x = x + ob2.x;

temp.y = y + ob2.y;

temp.z = z + ob2.z;

return temp;

}

three_d three_d ::operator -(three_d ob2)

{

three_d temp;

temp.x = x - ob2.x;

temp.y = y - ob2.y;

temp.z = z - ob2.z;

return temp;

}

three_d three_d :: operator ++()

{

489

TEACH YOURSELF
C++

x++;

y++;

z++;

return *this;

}

three_d three_d ::operator --()

{

x--;

y--;

z--;

return *this;

}

int main()

{

three_d o1(10, 10, 10), o2(2, 3, 4), o3;

int x, y, z;

o3 = o1 + o2;

o3.get(x, y, z);

cout << "X: " << x << ", Y: " << y;

cout << ", Z: " << z << "\n";

o3 = o1 - o2;

o3.get(x, y, z);

cout << "X: " << x << ", Y: " << y;

cout << ", Z: " << z << "\n";

++o1;

o1.get(x, y, z);

cout << "X: " << x << ", Y: " << y;

cout << ", Z: " << z << "\n";

--o1;

o1.get(x, y, z);

cout << "X: " << x << ", Y: " << y;

cout << ", Z: " << z << "\n";

return 0;

}

3. #include <iostream >

using namespace std;

class three_d

{

int x, y, z;

public:

490

ANSWERS
MASTERY SKILLS CHECK: Chapter 6

three_d(int i, int j, int k)

{

x = i; y = j; z = k;

}

three_d () { x=0; y=0; z=0; }

void get(int &i, int &j, int &k)

{

i = x; j = y; k = z;

}

three_d operator +(three_d &ob2);

three_d operator -(three_d &ob2);

friend three_d operator ++(three_d &ob);

friend three_d operator --(three_d &ob);

};

three_d three_d :: operator +(three_d &ob2)

{

three_d temp;

temp.x = x + ob2.x;

temp.y = y + ob2.y;

temp.z = z + ob2.z;

return temp;

}

three_d three_d ::operator -(three_d &ob2)

{

three_d temp;

temp.x = x - ob2.x;

temp.y = y - ob2.y;

temp.z = z - ob2.z;

return temp;

}

three_d operator ++(three_d &ob)

{

ob.x++;

ob.y++;

ob.z++;

return ob;

}

three_d operator --(three_d &ob)

{

ob.x--;

ob.y--;

ob.z--;

return ob;

491

TEACH YOURSELF
C++

}

int main()

{

three_d o1(10, 10, 10), o2(2, 3, 4), o3;

int x, y, z;

o3 = o1 + o2;

o3.get(x, y, z);

cout << "X: " << x << ", Y: " << y;

cout << ", Z: " << z << "\n";

o3 = o1 - o2;

o3.get(x, y, z);

cout << "X: " << x << ", Y: " << y;

cout << ", Z: " << z << "\n";

++o1;

o1.get(x, y, z);

cout << "X: " << x << ", Y: " << y;

cout << ", Z: " << z << "\n";

--o1;

o1.get(x, y, z);

cout << "X: " << x << ", Y: " << y;

cout << ", Z: " << z << "\n";

return 0;

}

4. A binary member operator function is passed the left operand implicitly via this pointer.
A binary friend operator function is passed both operands explicitly. Unary member
operator functions have no explicit parameters. A friend unary operator function has one
parameter.

5. You will need to overload the = operator when the default bitwise copy is insufficient.
For example, you might have a situation in which you want only parts of the data in one
object to be assigned to another object.

6. No.

7. #include <iostream >

using namespace std;

class three_d

{

int x, y, z;

public:

three_d(int i, int j, int k)

{

x = i; y = j; z = k;

}

492

ANSWERS
MASTERY SKILLS CHECK: Chapter 6

three_d () { x=0; y=0; z=0; }

void get(int &i, int &j, int &k)

{

i = x; j = y; k = z;

}

friend three_d operator +(three_d ob , int i);

friend three_d operator +(int i, three_d ob);

};

three_d operator +(three_d ob , int i)

{

three_d temp;

temp.x = ob.x + i;

temp.y = ob.y + i;

temp.z = ob.z + i;

return temp;

}

three_d operator +(int i, three_d ob)

{

three_d temp;

temp.x = ob.x + i;

temp.y = ob.y + i;

temp.z = ob.z + i;

return temp;

}

int main()

{

three_d o1(10, 10, 10);

int x, y, z;

o1 = o1 + 10;

o1.get(x, y, z);

cout << "X: " << x << ", Y: " << y;

cout << ", Z: " << z << "\n";

o1 = -20 + o1;

o1.get(x, y, z);

cout << "X: " << x << ", Y: " << y;

cout << ", Z: " << z << "\n";

return 0;

}

8. #include <iostream >

using namespace std;

class three_d

493

TEACH YOURSELF
C++

{

int x, y, z;

public:

three_d(int i, int j, int k)

{

x = i; y = j; z = k;

}

three_d () { x=0; y=0; z=0; }

void get(int &i, int &j, int &k)

{

i = x; j = y; k = z;

}

int operator ==(three_d ob2);

int operator !=(three_d ob2);

int operator ||(three_d ob2);

};

int three_d :: operator ==(three_d ob2)

{

return x==ob2.x && y==ob2.y && z==ob2.z;

}

int three_d :: operator !=(three_d ob2)

{

return x!=ob2.x && y!=ob2.y && z!=ob2.z;

}

int three_d :: operator ||(three_d ob2)

{

return x||ob2.x && y||ob2.y && z||ob2.z;

}

int main()

{

three_d o1(10, 10, 10), o2(2, 3, 4), o3(0, 0, 0);

if(o1==o1)

cout << "o1==o1\n";

if(o1!=o2)

cout << "o1!=o2\n";

if(o3 || o1)

cout << "o1 or o3 is true\n";

return 0;

}

9. The [] is usually overloaded to allow an array encapsulated within a class to be indexed
with the normal array indexing syntax.

494

ANSWERS
CUMULATIVE SKILLS CHECK: Chapter 6

CUMULATIVE SKILLS CHECK: Chapter 6

1. /*

For clarity , no error checking has been used. However

you should add some if using this code for a real

application.

*/

#include <iostream >

#include <cstring >

using namespace std;

class strtype

{

char s[80];

public:

strtype () { *s = ’\0’; }

strtype(char *p) { strcpy(s, p); }

char *get() { return s; }

strtype operator +(strtype s2);

strtype operator =(strtype s2);

int operator <(strtype s2);

int operator >(strtype s2);

int operator ==(strtype s2);

};

strtype strtype :: operator +(strtype s2)

{

strtype temp;

strcpy(temp.s, s);

strcat(temp.s, s2.s);

return temp;

}

strtype strtype :: operator =(strtype s2)

{

strcpy(s, s2.s);

return *this;

}

int strtype ::operator <(strtype s2)

{

return strcmp(s, s2.s) < 0;

}

int strtype ::operator >(strtype s2)

{

return strcmp(s, s2.s) > 0;

}

495

TEACH YOURSELF
C++

int strtype :: operator ==(strtype s2)

{

return strcmp(s, s2.s) == 0;

}

int main()

{

strtype o1("Hello"), o2("There"), o3;

o3 = o1 + o2;

cout << o3.get() << ’\n’;

o3 = o1;

if(o1==o3)

cout << "o1 equals o3\n";

if(o1 >o2)

cout << "o1 > o2\n";

if(o1 <o2)

cout << "o1 < o2\n";\

return 0;

}

REVIEW SKILLS CHECK: Chapter 7

1. No. Overloading an operator simply expands the data types upon which it can operate,
but no preexisting operations are affected.

2. Yes. You cannot overload an operator relative to one of C++’s built-in types.

3. No, the precedence cannot be changed. No, the number of operands cannot be altered.

4. #include <iostream >

using namespace std;

class array

{

int nums [10];

public:

array ();

void set(int n[10]);

void show();

array operator +(array ob2);

array operator -(array ob2);

int operator ==(array ob2);

};

array ::array ()

{

int i;

496

ANSWERS
REVIEW SKILLS CHECK: Chapter 7

for(i=0; i<10; i++)

nums[i] = 0;

}

void array::set(int *n)

{

int i;

for(i=0; i<10; i++)

nums[i] = n[i];

}

void array::show()

{

int i;

for(i=0; i<10; i++)

cout << nums[i] << ’ ’;

cout << "\n";

}

array array :: operator +(array ob2)

{

int i;

array temp;

for(i=0; i<10; i++)

temp.nums[i] = nums[i] + ob2.nums[i];

return temp;

}

array array ::operator -(array ob2)

{

int i;

array temp;

for(i=0; i<10; i++)

temp.nums[i] = nums[i] - ob2.nums[i];

return temp;

}

int array:: operator ==(array ob2)

{

int i;

for(i=0; i<10; i++)

if(nums[i]!= ob2.nums[i])

return 0;

497

TEACH YOURSELF
C++

return 1;

}

int main()

{

array o1, o2, o3;

int i[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

o1.set(i);

o2.set(i);

o3 = o1 + o2;

o3.show();

o3 = o1 - o3;

o3.show();

if(o1==o2)

cout << "o1 equals o2\n";

else

cout << "o1 does not equal o2\n";

if(o1==o3)

cout << "o1 equals o3\n";

else

cout << "o1 does not equal o3\n";

return 0;

}

5. #include <iostream >

using namespace std;

class array

{

int nums [10];

public:

array ();

void set(int n[10]);

void show();

friend array operator +(array ob1 , array ob2);

friend array operator -(array ob1 , array ob2);

friend int operator ==(array ob1 , array ob2);

};

array ::array ()

{

int i;

for(i=0; i<10; i++)

nums[i] = 0;

498

ANSWERS
REVIEW SKILLS CHECK: Chapter 7

}

void array::set(int *n)

{

int i;

for(i=0; i<10; i++)

nums[i] = n[i];

}

void array::show()

{

int i;

for(i=0; i<10; i++)

cout << nums[i] << ’ ’;

cout << "\n";

}

array operator +(array ob1 , array ob2)

{

int i;

array temp;

for(i=0; i<10; i++)

temp.nums[i] = ob1.nums[i] + ob2.nums[i];

return temp;

}

array operator -(array ob1 , array ob2)

{

int i;

array temp;

for(i=0; i<10; i++)

temp.nums[i] = ob1.nums[i] - ob2.nums[i];

return temp;

}

int operator ==(array ob1 , array ob2)

{

int i;

for(i=0; i<10; i++)

if(ob1.nums[i]!= ob2.nums[i])

return 0;

return 1;

}

499

TEACH YOURSELF
C++

int main()

{

array o1, o2, o3;

int i[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

o1.set(i);

o2.set(i);

o3 = o1 + o2;

o3.show();

o3 = o1 - o3;

o3.show();

if(o1==o2)

cout << "o1 equals o2\n";

else

cout << "o1 does not equal o2\n";

if(o1==o3)

cout << "o1 equals o3\n";

else

cout << "o1 does not equal o3\n";

return 0;

}

6. #include <iostream >

using namespace std;

class array

{

int nums [10];

public:

array ();

void set(int n[10]);

void show();

array operator ++();

friend array operator --(array &ob);

};

array ::array ()

{

int i;

for(i=0; i<10; i++)

nums[i] = 0;

}

void array::set(int *n)

{

500

ANSWERS
REVIEW SKILLS CHECK: Chapter 7

int i;

for(i=0; i<10; i++)

nums[i] = n[i];

}

void array::show()

{

int i;

for(i=0; i<10; i++)

cout << nums[i] << ’ ’;

cout << "\n";

}

// Overload unary op using member function.

array array :: operator ++()

{

int i;

for(i=0; i<10; i++)

nums[i]++;

return *this;

}

// Use a friend ./

array operator --(array &ob)

{

int i;

for(i=0; i<10; i++)

ob.nums[i]--;

return ob;

}

int main()

{

array o1, o2, o3;

int i[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

o1.set(i);

o2.set(i);

o3 = ++o1;

o3.show();

o3 = --o1;

501

TEACH YOURSELF
C++

o3.show();

return 0;

}

7. No. To overload the assignment operator you must use a member function.

7.1 EXERCISES

1. A and C are legal statements.

2. A public member of a base becomes a public member of a derived class when it is inherited
as public. When a public member of a base is inherited as private, it becomes a private
member of the derived class.

7.2 EXERCISES

1. When a protected member of a base class is inherited as public, it becomes a protected
member of the derived class. If it is inherited as private, it becomes a private member of
the derived class. If it is inherited as protected, it becomes a protected member of the
derived class.

2. The protected category is needed to allow a base class to keep certain members private
while still allowing a derived class to have access to them.

3. No.

7.3 EXERCISES

1. #include <iostream >

#include <cstring >

using namespace std;

class mybase

{

char str [80];

public:

mybase(char *s) { strcpy(str , s); }

char *get() { return str; }

};

class myderived : public mybase

{

int len;

public:

myderived(char *s) : mybase(s)

{

len = strlen(s);

}

int getlen () { return len; }

void show() { cout << get() << ’\n’; }

502

ANSWERS
7.3 EXERCISES

};

int main()

{

myderived ob("hello");

ob.show();

cout << ob.getlen () << ’\n’;

return 0;

}

2. #include <iostream >

using namespace std;

// A base class for various types of vehicles.

class vehicle

{

int num_wheels;

int range;

public:

vehicle(int w, int r)

{

num_wheels = w;

range = r;

}

void showv()

{

cout << "Wheels: " << num_wheels << ’\n’;

cout << "Range: " << range << ’\n’;

}

};

class car : public vehicle

{

int passengers;

public:

car(int p, int w, int r) : vehicle(w, r)

{

passengers = p;

}

void show()

{

showv ();

cout << "Passengers: " << passengers << ’\n’;

}

};

class truck : public vehicle

{

int loadlimit;

503

TEACH YOURSELF
C++

public:

truck(int l, int w, int r) : vehicle(w, r)

{

loadlimit = l;

}

void show()

{

showv ();

cout << "loadlimit " << loadlimit << ’\n’;

}

};

int main()

{

car c(5, 4, 500);

truck t(30000 , 12, 1200);

cout << "Car: \n";

c.show();

cout << "\nTruck :\n";

t.show();

return 0;

}

7.4 EXERCISES

1. Constructing A

Constructing B

Constructing C

Destructing C

Destructing B

Destructing A

2. #include <iostream >

using namespace std;

class A

{

int i;

public:

A(int a) { i = a; }

};

class B

{

int j;

public:

504

ANSWERS
7.5 EXERCISES

B(int a) { j = a; }

};

class C : public A, public B

{

int k;

public:

C(int c, int b, int a) : A(a), B(b)

{

k = c;

}

};

7.5 EXERCISES

2. A virtual base class is needed when a derived class inherits two (or more) classes, both of
which are derived from the same base class. Without virtual base classes, two (or more)
copies of the common base class would exist in the final derived class, However, if the
original base is virtual, only one copy is present in the final derived class.

MASTERY SKILLS CHECK: Chapter 7

1. #include <iostream >

using namespace std;

class building

{

protected:

int floors;

int rooms;

double footage;

};

class house : public building

{

int bedrooms;

int bathrooms;

public:

house(int f, int r, double ft, int br, int bth)

{

floors = f;

rooms = r;

footage = ft;

bedrooms = br;

bathrooms = bth;

}

void show()

{

cout << "floors: " << floors << ’\n’;

505

TEACH YOURSELF
C++

cout << "rooms: " << rooms << ’\n’;

cout << "square footage: " << footage << ’\n’;

cout << "bedrooms: " << bedrooms << ’\n’;

cout << "bathrooms: " << bathrooms << ’\n’;

}

};

class office : public building

{

int phones;

int extinguishers;

public:

office(int f, int r, double ft , int p, int ext)

{

floors = f;

rooms = r;

footage = ft;

phones = p;

extinguishers = ext;

}

void show()

{

cout << "floors: " << floors << ’\n’;

cout << "floors: " << floors << ’\n’;

cout << "rooms: " << rooms << ’\n’;

cout << "square footage: " << footage << ’\n’;

cout << "Telephones: " << phones << ’\n’;

cout << "fore extinguishers: ";

cout << extinguishers << ’\n’;

}

};

int main()

{

house h_ob(2, 12, 5000, 6, 4);

office o_ob(4, 25, 12000, 30, 8);

cout << "House:\n";

h_ob.show();

cout << "\nOffice :\n";

o_ob.show();

return 0;

}

2. When a base class is inherited as public, the public members of the base become public
members of the derived class, and the base’s private members remain private to the base.
If the base is inherited as private, all members of the base become private members of the
derived class.

3. Members declared as protected are private to the base class but can be inherited (and

506

ANSWERS
CUMULATIVE SKILLS CHECK: Chapter 7

accessed) by any derived class. When used as an inheritance access specifier, protected
causes all public and protected members of the base class to become protected members
of the derived class.

4. Constructors are called in order of derivation. Destructors are called in reverse order.

5. #include <iostream >

using namespace std;

class planet

{

protected:

double distance; // miles from the sun

int revolve; // in days

public:

planet(double d, int r) { distance = d; revolve = r; }

};

class earth : public planet

{

double circumference;

public:

earth(double d, int r) : planet(d, r)

{

circumference = 2* distance *3.1416;

}

void show()

{

cout << "Distance from sun: " << distance << ’\n’;

cout << "Days in orbit: " << revolve << ’\n’;

cout << "Circumference of orbit: ";

cout << circumference << ’\n’;

}

};

int main()

{

earth ob(93000000 , 365);

ob.show();

return 0;

}

6. To fix the program, have motorized and road use inherit vehicle as a virtual base class.
Also, refer to Question 1 in the Cumulative Skills Check in this chapter.

CUMULATIVE SKILLS CHECK: Chapter 7

1. Some compilers will not allow you to use a switch in an in-line function. If this is the
case with your compiler, the functions were automatically made into ”regular” functions.

507

TEACH YOURSELF
C++

2. The assignment operators is the only operator that is not inherited. The reason for this
is easy to understand. Since a derived class will contain members not found in the base
class, the overloaded = relative to the base has no knowledge of the members added by
the derived class and, as such, cannot properly copy those new members.

REVIEW SKILLS CHECK: Chapter 8

1. #include <iostream >

using namespace std;

class airship

{

protected:

int passengers;

double cargo;

};

class airplane : public airship

{

char engine; // p for propeller , j for jet

double range;

public:

airplane(int p, double c, char e, double r)

{

passengers = p;

cargo = c;

engine = e;

range = r;

}

void show();

};

class balloon : public airship

{

char gas; // h for hydrogen , e for helium

double altitude;

public:

balloon(int p, double c, char g, double a)

{

passengers = p;

cargo = c;

gas = g;

altitude = a;

}

void show();

};

void airplane ::show()

{

cout << "Passengers: " << passengers << ’\n’;

cout << "Cargo capacity: " << cargo << ’\n’;

508

ANSWERS
REVIEW SKILLS CHECK: Chapter 8

cout << "Engine: ";

if(engine ==’p’)

cout << "Propeller\n";

else

cout << "Jet\n";

cout << "Range: " << range << ’\n’;

}

void balloon ::show()

{

cout << "Passengers: " << passengers << ’\n’;

cout << "Cargo capacity: " << cargo << ’\n’;

cout << "Gas: ";

if(gas==’h’)

cout << "Hydrogen\n";

else

cout << "Helium\n";

cout << "Altitude: " << altitude << ’\n’;

}

int main()

{

balloon b(2, 500.0, ’h’, 12000.0);

airplane b727 (100, 40000.0 , ’j’, 40000.0);

b.show();

cout << ’\n’;

b727.show();

return 0;

}

2. The protected access specifier causes a class member to be private to its class but still
accessible by any derived class.

3. The program displays the following output, which indicates when the constructors and
destructors are called.

Constructing A

Constructing B

Constructing C

Destructing C

Destructing B

Destructing A

4. Constructors are called in the order ABC, destructors in the order CBA.

5. #include <iostream >

using namespace std;

509

TEACH YOURSELF
C++

class base

{

int i, j;

public:

base(int x, int y) { i = x; j = y; }

void showij () { cout << i << ’ ’ << j << ’\n’; }

};

class derived : public base

{

int k;

public:

derived(int a, int b, int c) : base(b, c)

{

k = a;

}

void show() { cout << k << ’ ’; showij (); }

};

int main()

{

derived ob(1, 2, 3);

ob.show();

return 0;

}

6. The missing words are ”general” and ”specific”.

8.2 EXERCISES

1. #include <iostream >

using namespace std;

int main()

{

cout.setf(ios:: showpos);

cout << -10 << ’ ’ << 10 << ’\n’;

return 0;

}

2. #include <iostream >

using namespace std;

int main()

{

cout.setf(ios:: showpoint | ios:: uppercase |

510

ANSWERS
8.3 EXERCISES

ios:: scientific);

cout << 100.0;

return 0;

}

3. #include <iostream >

using namespace std;

int main()

{

ios:: fmtflags f;

f = cout.flags (); // store flags

cout.unsetf(ios::dec);

cout.setf(ios:: showbase | ios::hex);

cout << 100 << ’\n’;

cout.flags(f); // reset flags

return 0;

}

8.3 EXERCISES

1. // Create a table of log10 and log from 2 through 100.

#include <iostream >

#include <cmath >

using namespace std;

int main()

{

double x;

cout.precision (5);

cout << " x log x ln e\n\n";

for(x = 2.0; x <= 100.0; x++)

{

cout.width (10);

cout << x << ’ ’;

cout.width (10);

cout << log10 (10) << ’ ’;

cout.width (10);

cout << log(x) << ’\n’;

}

return 0;

}

511

TEACH YOURSELF
C++

2. #include <iostream >

#include <cstring >

using namespace std;

void center(char *s);

int main()

{

center("Hi there!");

center("I like C++.");

return 0;

}

void center(char *s)

{

int len;

len = 40+(strlen(s)/2);

cout.width(len);

cout << s << ’\n’;

}

1a. // Create a table of log10 and log from 2 through 100.

#include <iostream >

#include <iomanip >

#include <cmath >

using namespace std;

int main()

{

double x;

cout.precision (5);

cout << " x log x ln e\n\n";

for(x = 2.0; x <= 100.0; x++)

{

cout << setw (10) << x << ’ ’;

cout << setw (10) << log10 (10) << ’ ’;

cout << setw (10) << log(x) << ’\n’;

}

return 0;

}

1b. #include <iostream >

#include <iomanip >

#include <cstring >

using namespace std;

512

ANSWERS
8.5 EXERCISES

void center(char *s);

int main()

{

center("Hi there!");

center("I like C++.");

return 0;

}

void center(char *s)

{

int len;

len = 40+(strlen(s)/2);

cout << setw(len) << s << ’\n’;

}

2. cout << setiosflags(ios:: showbase | ios::hex) << 100;

3. Setting the boolalpha flag on an output stream causes Boolean values to be displayed
using the words true and false. Setting boolalpha on an input stream allows you to enter
Boolean values using the words true and false.

8.5 EXERCISES

1. #include <iostream >

#include <cstring >

#include <cstdlib >

using namespace std;

class strtype

{

char *p;

int len;

public :

strtype(char * ptr);

~strtype () { delete [] p; }

friend ostream &operator <<(ostream &stream , strtype &ob)

;

};

strtype :: strtype(char *ptr)

{

len = strlen(ptr)+1;

p = new char(len);

if(!p)

{

cout << "Allocation error \n";

exit (1) ;

513

TEACH YOURSELF
C++

}

strcpy (p, ptr);

}

ostream &operator <<(ostream &stream , strtype &ob)

{

stream << ob.p;

return stream;

}

int main()

{

strtype s1("This is a test."), s2("I like C++.");

cout << s1 << ’\n’ << s2 << ’\n’;

return 0;

}

2. #include <iostream >

using namespace std;

class planet

{

protected:

double distance; // miles from the sun

int revolve; // in days

public:

planet(double d, int r) { distance = d; revolve = r; }

};

class earth : public planet

{

double circumference; // circumference of orbit

public:

earth(double d, int r) : planet(d, r)

{

circumference = 2* distance *3.1416;

}

friend ostream &operator <<(ostream &stream , earth ob);

};

ostream &operator <<(ostream &stream , earth ob)

{

stream << "Distance from sun: " << ob.distance << ’\n’;

stream << "Days in orbit: " << ob.revolve << ’\n’;

stream << "Circumference of orbit: ";

stream << ob.circumference << ’\n’;

}

int main()

514

ANSWERS
8.6 EXERCISES

{

earth ob(93000000 , 365);

cout << ob;

return 0;

}

3. An inserter cannot be a member function because the object that generates a call to the
inserter is not an object of a user-defined class.

8.6 EXERCISES

1. #include <iostream >

#include <cstring >

#include <cstdlib >

using namespace std;

class strtype

{

char *p;

int len;

public :

strtype(char *ptr);

~strtype () { delete [] p; }

friend ostream &operator <<(ostream &stream , strtype &ob)

;

friend istream &operator >>(istream &stream , strtype &ob)

;

};

strtype :: strtype(char *ptr)

{

len = strlen(ptr)+1;

p = new char(len);

if(!p)

{

cout << "Allocation error \n";

exit (1) ;

}

strcpy (p, ptr);

}

ostream &operator <<(ostream &stream , strtype &ob)

{

stream << ob.p;

return stream;

}

istream &operator >>(istream &stream , strtype &ob)

515

TEACH YOURSELF
C++

{

char temp [255];

stream >> temp;

if(strlen(temp) >= ob.len)

{

delete [] ob.p;

ob.len = strlen(temp)+1;

ob.p = new char(ob.len);

if(!ob.p)

{

cout << "Allocation error\n";

exit (1);

}

}

strcpy(ob.p, temp);

return stream;

}

int main()

{

strtype s1("This is a test."), s2("I like C++.");

cout << s1 << ’\n’ << s2 << ’\n’;

cout << "\nEnter a string: ";

cin >> s1;

cout << s1;

return 0;

}

2. #include <iostream >

using namespace std;

class factor

{

int num; // number

int lfact; // lowest factor

public:

factor(int i);

friend ostream &operator <<(ostream &stream , factor ob);

friend istream &operator >>(istream &stream , factor &ob);

};

factor :: factor(int i)

{

int n;

num = i;

516

ANSWERS
MASTERY SKILLS CHECK: Chapter 8

for(n=2; n<(i/2); n++)

if(!(i%n))

break;

if(n<(i/2))

lfact = n;

else

lfact = 1;

}

istream &operator >>(istream &stream , factor &ob)

{

stream >> ob.num;

int n;

for(n=2; n<(ob.num/2); n++)

if(!(ob.num%n))

break;

if(n<(ob.num /2))

ob.lfact = n;

else

ob.lfact = 1;

return stream;

}

ostream &operator <<(ostream &stream , factor ob)

{

stream << ob.lfact << " is lowest factor of ";

stream << ob.num << ’\n’;

return stream;

}

int main()

{

factor o(32);

cout << o;

cin >> o;

cout << o;

return 0;

}

MASTERY SKILLS CHECK: Chapter 8

517

TEACH YOURSELF
C++

1. #include <iostream >

using namespace std;

int main()

{

cout << 100 << ’ ’;

cout.unsetf(ios::dec); // clear dec flag

cout.setf(ios::hex);

cout << 100 << ’ ’;

cout.unsetf(ios::hex); // clear hex flag

cout.setf(ios::oct);

cout << 100 << ’\n’;

return 0;

}

2. #include <iostream >

using namespace std;

int main()

{

cout.setf(ios::left);

cout.precision (2);

cout.fill(’*’);

cout.width (20);

cout << 1000.5364 << ’\n’;

return 0;

}

3a. #include <iostream >

using namespace std;

int main()

{

cout << 100 << ’ ’;

cout << hex << 100 << ’ ’;

cout << oct << 100 << ’\n’;

return 0;

}

3b. #include <iostream >

#include <iomanip >

using namespace std;

518

ANSWERS
MASTERY SKILLS CHECK: Chapter 8

int main()

{

cout << setiosflags(ios::left);

cout << setprecision (2);

cout << setfill(’*’);

cout << setw (20);

cout << 1000.5364 << ’\n’;

return 0;

}

4. ios:: fmtflags f;

f = cout.flag(); // save

// ...

cout.flags(f); // restore

5. #include <iostream >

using namespace std;

class pwr

{

int base;

int exponent;

double result; // base to the exponent power

public:

pwr(int b, int e);

friend ostream &operator <<(ostream &stream , pwr ob);

friend istream &operator >>(istream &stream , pwr &ob);

};

pwr::pwr(int b, int e)

{

base = b;

exponent = e;

result = 1;

for(; e; e--)

result = result * base;

}

ostream &operator <<(ostream &stream , pwr ob)

{

stream << ob.base << "^" << ob.exponent;

stream << " is " << ob.result << ’\n’;

}

istream &operator >>(istream &stream , pwr &ob)

{

519

TEACH YOURSELF
C++

int b, e;

cout << "Enter base and exponent: ";

stream >> b >> e;

pwr temp(b, e); // create temporary

ob = temp;

return stream;

}

int main()

{

pwr ob(10, 2);

cout << ob;

cin >> ob;

cout << ob;

return 0;

}

6. // This program draws boxes.

#include <iostream >

using namespace std;

class box

{

int len;

public:

box(int l) { len = l; }

friend ostream &operator <<(ostream &stream , box ob);

};

// Draw a box.

ostream &operator <<(ostream &stream , box ob)

{

int i, j;

for(i=0; i<ob.len; i++)

stream << ’*’;

stream << ’\n’;

for(i=0; i<ob.len -2;i++)

{

stream << ’*’;

for(j=0; j<ob.len -2;j++)

stream << ’ ’;

stream << "*\n";

520

ANSWERS
CUMULATIVE SKILLS CHECK: Chapter 8

}

for(i=0; i<ob.len; i++)

stream << ’*’;

stream << ’\n’;

return stream;

}

int main()

{

box b1(4), b2(7);

cout << b1 << endl << b2;

return 0;

}

CUMULATIVE SKILLS CHECK: Chapter 8

1. #include <iostream >

using namespace std;

#define SIZE 10

// Declare a stack class for characters

class stack

{

char stck[SIZE]; // holds the stack

int tos; // index of top of stack

public:

stack ();

void push(char ch); // push character on stack

char pop(); // pop character from stack

friend ostream &operator <<(ostream &stream , stack ob);

};

// Initialize the stack

stack ::stack ()

{

tos = 0;

}

// Push a character.

void stack::push(char ch)

{

if(tos==SIZE)

{

cout << "Stack is full\n";

return;

}

stck[tos] = ch;

521

TEACH YOURSELF
C++

tos ++;

}

// Pop a character.

char stack::pop()

{

if(tos ==0)

{

cout << "Stack is empty\n";

return 0; // return null on empty stack

}

tos --;

return stck[tos];

}

ostream &operator <<(ostream &stream , stack ob)

{

char ch;

while(ch=ob.pop())

stream << ch;

stream << endl;

return stream;

}

int main()

{

stack s;

s.push(’a’);

s.push(’b’);

s.push(’c’);

cout << s;

cout << s;

return 0;

}

2. #include <iostream >

#include <ctime >

using namespace std;

class watch

{

time_t t;

public:

watch () { t = time(NULL); }

friend ostream &operator <<(ostream &stream , watch ob);

};

522

ANSWERS
CUMULATIVE SKILLS CHECK: Chapter 8

ostream &operator <<(ostream &stream , watch ob)

{

struct tm *localt;

localt = localtime (&ob.t);

stream << asctime(localt) << endl;

return stream;

}

int main()

{

watch w;

cout << w;

return 0;

}

3. #include <iostream >

using namespace std;

class ft_to_inches

{

double feet;

double inches;

public:

void set(double f)

{

feet = f;

inches = f * 12;

}

friend istream &operator >>(istream &stream ,

ft_to_inches &ob);

friend ostream &operator <<(ostream &stream ,

ft_to_inches ob);

};

istream &operator >>(istream &stream , ft_to_inches &ob)

{

double f;

cout << "Enter feet: ";

stream >> f;

ob.set(f);

return stream;

}

ostream &operator <<(ostream &stream , ft_to_inches ob)

523

TEACH YOURSELF
C++

{

stream << ob.feet << " feet is " << ob.inches;

stream << " inches\n";

return stream;

}

int main()

{

ft_to_inches x;

cin >> x;

cout << x;

return 0;

}

REVIEW SKILLS CHECK: Chapter 9

1. #include <iostream >

using namespace std;

int main()

{

cout.width (40);

cout.fill(’:’);

cout << "C++ is fun" << ’\n’;

return 0;

}

2. #include <iostream >

using namespace std;

int main()

{

cout.precision (4);

cout << 10.0/3.0 << ’\n’;

return 0;

}

3. #include <iostream >

#include <iomanip >

using namespace std;

int main()

{

cout << setprecision (4) << 10.0/3.0 << ’\n’;

524

ANSWERS
9.1 EXERCISES

return 0;

}

4. An inserter is an overloaded operator<<() function that outputs a class’s data to an
output stream. An extractor is an overloaded operator>>() function that inputs a
class’s data from an input stream.

5. #include <iostream >

using namespace std;

class date

{

char d[9]; // store date as string: mm/dd/yy

public:

friend ostream &operator <<(ostream &stream , date ob);

friend istream &operator >>(istream &stream , date &ob);

};

ostream &operator <<(ostream &stream , date ob)

{

stream << ob.d << ’\n’;

return stream;

}

istream &operator >>(istream &stream , date &ob)

{

cout << "Enter date (mm/dd/yy): ";

stream >> ob.d;

return stream;

}

int main()

{

date ob;

cin >> ob;

cout << ob;

return 0;

}

6. To use a parameterized manipulator, you must include <iomanip> in your program.

7. The predefined streams are cin, cout, cerr, and clog.

9.1 EXERCISES

1. // Show time and date.

525

TEACH YOURSELF
C++

#include <iostream >

#include <ctime >

using namespace std;

// A time and date output manipulator.

ostream &td(ostream &stream)

{

struct tm *localt;

time_t t;

t = time(NULL);

localt = localtime (&t);

stream << asctime(localt) << endl;

return stream;

}

int main()

{

cout << td << ’\n’;

return 0;

}

2. #include <iostream >

using namespace std;

// Turn on hex output with uppercase X.

ostream &sethex(ostream &stream)

{

stream.unsetf(ios::dec | ios::oct);

stream.setf(ios::hex | ios:: uppercase |

ios:: showbase);

return stream;

}

// Reset flags.

ostream &reset(ostream &stream)

{

stream.unsetf(ios::hex | ios:: uppercase |

ios:: showbase);

stream.setf(ios::dec);

return stream;

}

int main()

{

cout << sethex << 100 << ’\n’;

cout << reset << 100 << ’\n’;

526

ANSWERS
9.2 EXERCISES

return 0;

}

3. #include <iostream >

using namespace std;

// Skip 10 characters.

istream &skipchar(istream &stream)

{

int i;

char c;

for(i=0; i<10; i++)

stream >> c;

return stream;

}

int main()

{

char str [80];

cout << "Enter some characters: ";

cin >> skipchar >> str;

cout << str << ’\n’;

return 0;

}

9.2 EXERCISES

1. // Copy a text file and display number of chars copied.

#include <iostream >

#include <fstream >

using namespace std;

int main(int argc , char *argv [])

{

if(argc !=3)

{

cout << "Usage: CPY <input > <output >\n";

return 1;

}

ifstream fin(argv [1]); // open input file.

ofstream fout(argv [2]); // create output file

if(!fin)

527

TEACH YOURSELF
C++

{

cout << "Cannot open input file.\n";

return 1;

}

if(!fout)

{

cout << "Cannot open output file.\n";

return 1;

}

char ch;

unsigned count = 0;

fin.unsetf(ios:: skipws); // do not skip spaces

while (!fin.eof())

{

fin >> ch;

if(!fin.eof())

{

fout << ch;

count ++;

}

}

cout << "Number of bytes copied: " << count << ’\n’;

fin.close();

fout.close();

return 0;

}

The reason this program might display a result different from that shown when you list
the directory is that some character translations might be taking place. Specifically, when
a carriage-return/linefeed sequence is read, it is converted into a newline. When output,
newlines are counted as one character but converted back into a carriage-return/linefeed
sequence again.

2. #include <iostream >

#include <fstream >

using namespace std;

int main()

{

ofstream pout("phone");

if(!pout)

{

cout << "Cannot open PHONE file.\n";

return 1;

}

528

ANSWERS
9.2 EXERCISES

pout << "Isaac Newton 415 555 -3423\n";

pout << "Robert Goddard 213 555 -2312\n";

pout << "Enrico Fermi 202 555 -1111\n";

pout.close();

return 0;

}

3. // Word count

#include <iostream >

#include <fstream >

#include <cctype >

using namespace std;

int main(int argc , char *argv [])

{

if(argc !=2)

{

cout << "Usage: COUNT <input >\n";

return 1;

}

ifstream in(argv [1]);

if(!in)

{

cout << "Cannot open input file.\n";

return 1;

}

int count = 0;

char ch;

in >> ch; // find first non -space char

// after first non -space found , do not skip spaces

in.unsetf(ios:: skipws); // do not skip spaces

while (!in.eof())

{

in >> ch;

if(isspace(ch))

{

count ++;

while(isspace(ch) && !in.eof())

in >> ch;

}

}

529

TEACH YOURSELF
C++

cout << "Word count: " << count << ’\n’;

in.close();

return 0;

}

4. The is open() function returns true if the invoking stream is linked to an open file.

9.3 EXERCISES

1a. // Copy a file and display number of chars copied.

#include <iostream >

#include <fstream >

using namespace std;

int main(int argc , char *argv [])

{

if(argc !=3)

{

cout << "Usage: CPY <input > <output >\n";

return 1;

}

ifstream fin(argv[1], ios::in | ios:: binary); // open

input file

ofstream fout(argv[2], ios::out | ios:: binary); // create

output file

if(!fin)

{

cout << "Cannot open input file\n";

return 1;

}

if(!fout)

{

cout << "Cannot open output file\n";

return 1;

}

char ch;

unsigned count =0;

while (!fin.eof())

{

fin.get(ch);

if(!fin.eof())

{

fout.put(ch);

count ++;

530

ANSWERS
9.3 EXERCISES

}

}

cout << "Number of bytes copied: " << count << ’\n’;

fin.close();

fout.close();

return 0;

}

1b. // Word count.

#include <iostream >

#include <fstream >

#include <cctype >

using namespace std;

int main(int argc , char *argv [])

{

if(argc !=2)

{

cout << "Usage: COUNT <input >\n";

return 1;

}

ifstream in(argv[1], ios::in | ios:: binary);

if(!in)

{

cout << "Cannot open input file.\n";

return 1;

}

int count = 0;

char ch;

// find first non -space char

do

{

in.get(ch);

}

while(isspace(ch));

while (!in.eof())

{

in.get(ch);

if(isspace(ch))

{

count ++;

while(isspace(ch) && !in.eof())

in.get(ch); // find next word

531

TEACH YOURSELF
C++

}

}

cout << "Word count: " << count << ’\n’;

in.close();

return 0;

}

2. // Output account info to a file using an inserter.

#include <iostream >

#include <fstream >

#include <cstring >

using namespace std;

class account

{

int custnum;

char name [80];

double balance;

public:

account(int c, char *n, double b)

{

custnum = c;

strcpy(name , n);

balance = b;

}

friend ostream &operator <<(ostream &stream , account ob);

};

ostream &operator <<(ostream &stream , account ob)

{

stream << ob.custnum << ’ ’;

stream << ob.name << ’ ’ << ob.balance;

stream << ’\n’;

return stream;

}

int main()

{

account Rex (1011, "Ralph Rex", 12323.34);

ofstream out("accounts", ios::out | ios:: binary);

if(!out)

{

cout << "Cannot open output file.\n";

return 1;

}

532

ANSWERS
9.4 EXERCISES

out << Rex;

out.close();

return 0;

}

9.4 EXERCISES

1. // Use get() to read a string that contains spaces.

#include <iostream >

#include <fstream >

using namespace std;

int main()

{

char str [80];

cout << "Enter your name: ";

cin.get(str , 79);

cout << str << ’\n’;

return 0;

}

The program functions the same whether it uses get() or getline().

2. // Use getline () to display a text file.

#include <iostream >

#include <fstream >

using namespace std;

int main(int argc , char *argv [])

{

if(argc !=2)

{

cout << "Usage: PR <filename >\n";

return 1;

}

ifstream in(argv [1]);

if(!in)

{

cout << "Cannot open input file.\n";

return 1;

}

char str [255];

533

TEACH YOURSELF
C++

while (!in.eof())

{

in.getline(str , 254);

cout << str << ’\n’;

}

in.close();

return 0;

}

9.5 EXERCISES

1. // Display a file backwards on the screen.

#include <iostream >

#include <fstream >

using namespace std;

int main(int argc , char *argv [])

{

if(argc !=2)

{

cout << "Usage: REVERSE <filename >\n";

return 1;

}

ifstream in(argv[1], ios::in | ios:: binary);

if(!in)

{

cout << "Cannot open input file.\n";

return 1;

}

char ch;

long i;

// go to end of file (less eof char)

in.seekg(0, ios::end);

i = (long) in.tellg (); // see how many bytes in file

i -= 2; // backup before eof

for(; i>=0; i--)

{

in.seekg(i, ios::beg);

in.get(ch);

cout << ch;

}

in.close();

534

ANSWERS
9.6 EXERCISES

return 0;

}

2. // Swap characters in a file.

#include <iostream >

#include <fstream >

using namespace std;

int main(int argc , char *argv [])

{

if(argc !=2)

{

cout << "Usage: SWAP <filename >\n";

return 1;

}

// opne file for input/output

fstream io(argv[1], ios::in | ios::out | ios:: binary);

if(!io)

{

cout << "Cannot open file.\n";

return 1;

}

char ch1 , ch2;

long i;

for(i=0; !io.eof(); i+=2)

{

io.seekg(i, ios::beg);

io.get(ch1);

if(io.eof())

continue;

io.get(ch2);

if(!io.eof())

continue;

io.seekg(i, ios::beg);

io.put(ch2);

io.put(ch1);

}

io.close();

return 0;

}

9.6 EXERCISES

1a. /*

Display a file backwards on the screen ,

535

TEACH YOURSELF
C++

plus error checking.

*/

#include <iostream >

#include <fstream >

using namespace std;

int main(int argc , char *argv [])

{

if(argc !=2)

{

cout << "Usage: REVERSE <filename >\n";

return 1;

}

ifstream in(argv[1], ios::in | ios:: binary);

if(!in)

{

cout << "Cannot open input file.\n";

return 1;

}

char ch;

long i;

// go to end of file (less eof char)

in.seekg(0, ios::end);

if(!in.good())

return 1;

i = (long) in.tellg (); // see how many bytes in file

if(!in.good())

return 1;

i -= 2; // backup before eof

for(; i>=0; i--)

{

in.seekg(i, ios::beg);

if(!in.good())

return 1;

in.get(ch);

if(!in.good())

return 1;

cout << ch;

}

in.close();

if(!io.good())

return 1;

return 0;

}

536

ANSWERS
9.6 EXERCISES

1b. // Swap characters in a file with error checking.

#include <iostream >

#include <fstream >

using namespace std;

int main(int argc , char *argv [])

{

if(argc !=2)

{

cout << "Usage: SWAP <filename >\n";

return 1;

}

// opne file for input/output

fstream io(argv[1], ios::in | ios::out | ios:: binary);

if(!io)

{

cout << "Cannot open file.\n";

return 1;

}

char ch1 , ch2;

long i;

for(i=0; !io.eof(); i+=2)

{

io.seekg(i, ios::beg);

if(!io.good())

return 1;

io.get(ch1);

if(io.eof())

continue;

io.get(ch2);

if(!io.good())

return 1;

if(!io.eof())

continue;

io.seekg(i, ios::beg);

if(!io.good())

return 1;

io.put(ch2);

if(!io.good())

return 1;

io.put(ch1);

if(!io.good())

return 1;

}

io.close();

if(!io.good())

return 1;

537

TEACH YOURSELF
C++

return 0;

}

MASTERY SKILLS CHECK: Chapter 9

1. #include <iostream >

using namespace std;

ostream &tabs(ostream &stream)

{

stream << ’\t’ << ’\t’ << ’\t’;

stream.width (20);

return stream;

}

int main()

{

cout << tabs << "Testing\n";

return 0;

}

2. #include <iostream >

#include <cctype >

using namespace std;

istream &findalpha(istream &stream)

{

char ch;

do

{

stream.get(ch);

}

while (! isalpha(ch));

return stream;

}

int main()

{

char str [80];

cin >> findalpha >> str;

cout << str << ’\n’;

return 0;

}

538

ANSWERS
MASTERY SKILLS CHECK: Chapter 9

3. // Copy a file and reverse case of letters.

#include <iostream >

#include <fstream >

#include <cctype >

using namespace std;

int main(int argc , char *argv [])

{

char ch;

if(argc !=3)

{

cout << "Usage: COPYREV <source > <target >\n";

return 1;

}

ifstream in(argv [1]);

if(!in)

{

cout << "Cannot open input file.\n";

return 1;

}

ofstream out(argv [2]);

if(!out)

{

cout << "Cannot open output file.\n";

return 1;

}

while (!in.eof())

{

ch = in.get();

if(!in.eof())

{

if(islower(ch))

ch = toupper(ch);

else

ch = tolower(ch);

out.put(ch);

}

}

in.close();

out.close();

return 0;

}

539

TEACH YOURSELF
C++

4. // Count letters.

#include <iostream >

#include <fstream >

#include <cctype >

using namespace std;

int alpha [26];

int main(int argc , char *argv [])

{

char ch;

if(argc !=2)

{

cout << "Usage: COUNT <source >\n";

return 1;

}

ifstream in(argv [1]);

if(!in)

{

cout << "Cannot open input file.\n";

return 1;

}

// init alpha[]

int i;

for(i=0; i<26; i++)

alpha[i] = 0;

while (!in.eof())

{

ch = in.get();

if(isalpha(ch)) // if letter found , count it

{

ch = toupper(ch); // normalize

alpha[ch-’A’]++; // ’A’-’A’ == 0, ’B’-’A’ == 1,

etc.

}

}

// display count

for(i=0; i<26; i++)

cout << (char) (’A’+i) << ": " << alpha[i] << ’\n’;

in.close();

return 0;

}

540

ANSWERS
MASTERY SKILLS CHECK: Chapter 9

5a. /*

Copy a file and reverse case of letters

with error checking.

*/

#include <iostream >

#include <fstream >

#include <cctype >

using namespace std;

int main(int argc , char *argv [])

{

char ch;

if(argc !=3)

{

cout << "Usage: COPYREV <source > <target >\n";

return 1;

}

ifstream in(argv [1]);

if(!in)

{

cout << "Cannot open input file.\n";

return 1;

}

ofstream out(argv [2]);

if(!out)

{

cout << "Cannot open output file.\n";

return 1;

}

while (!in.eof())

{

ch = in.get();

if(!in.good() && !in.eof())

return 1;

if(!in.eof())

{

if(islower(ch))

ch = toupper(ch);

else

ch = tolower(ch);

out.put(ch);

if(!out.good())

return 1;

}

}

541

TEACH YOURSELF
C++

in.close();

out.close();

if(!in.good() && !out.good())

return 1;

return 0;

}

5b. // Count letters with error checking.

#include <iostream >

#include <fstream >

#include <cctype >

using namespace std;

int alpha [26];

int main(int argc , char *argv [])

{

char ch;

if(argc !=2)

{

cout << "Usage: COUNT <source >\n";

return 1;

}

ifstream in(argv [1]);

if(!in)

{

cout << "Cannot open input file.\n";

return 1;

}

// init alpha[]

int i;

for(i=0; i<26; i++)

alpha[i] = 0;

while (!in.eof())

{

ch = in.get();

if(!in.good() && !in.eof())

return 1;

if(isalpha(ch)) // if letter found , count it

{

ch = toupper(ch); // normalize

alpha[ch-’A’]++; // ’A’-’A’ == 0, ’B’-’A’ == 1,

etc.

}

542

ANSWERS
CUMULATIVE SKILLS CHECK: Chapter 9

}

// display count

for(i=0; i<26; i++)

cout << (char) (’A’+i) << ": " << alpha[i] << ’\n’;

in.close();

if(!in.good())

return 1;

return 0;

}

6. To set the get pointer, use seekg(). To set the put pointer, use seekp().

CUMULATIVE SKILLS CHECK: Chapter 9

1. #include <iostream >

#include <fstream >

#include <cstring >

using namespace std;

#define SIZE 40

class inventory

{

char item[SIZE]; // name of item

int onhand; // number on hand

double cost; // cost of item

public:

inventory(char *i, int o, double c)

{

strcpy(item , i);

onhand = o;

cost = c;

}

void store(fstream &stream);

void retrieve(fstream &stream);

friend ostream &operator <<(ostream &stream , inventory ob)

;

friend istream &operator >>(istream &stream , inventory &ob

);

};

ostream &operator <<(ostream &stream , inventory ob)

{

stream << ob.item << ": " << ob.onhand;

stream << " on hand at $" << ob.cost << ’\n’;

return stream;

}

543

TEACH YOURSELF
C++

istream &operator >>(istream &stream , inventory &ob)

{

cout << "Enter item name: ";

stream >> ob.item;

cout << "Enter number on hand: ";

stream >> ob.onhand;

cout << "Enter cost: ";

stream >> ob.cost;

return stream;

}

void inventory :: store(fstream &stream)

{

stream.write(item , SIZE);

stream.write ((char *) &onhand , sizeof(int));

stream.write ((char *) &cost , sizeof(double));

}

void inventory :: retrieve(fstream &stream)

{

stream.read(item , SIZE);

stream.read((char *) &onhand , sizeof(int));

stream.read((char *) &cost , sizeof(double));

}

int main()

{

fstream inv("inv", ios::out | ios:: binary);

int i;

inventory pliers("pliers", 12, 4.95);

inventory hammers("hammers", 5, 9.45);

inventory wrenches("wrenches", 22, 13.90);

inventory temp("", 0, 0.0);

if(!inv)

{

cout << "Cannot open file for output .\n";

return 1;

}

// write to file

pliers.store(inv);

hammers.store(inv);

wrenches.store(inv);

inv.close();

// open for input

544

ANSWERS
REVIEW SKILLS CHECK: Chapter 10

inv.open("inv", ios::in | ios:: binary);

if(!inv)

{

cout << "Cannot open file for input.\n";

return 1;

}

do

{

cout << "Record # (-1 to quit): ";

cin >> i;

if(i == -1)

break;

inv.seekg(i*(SIZE+sizeof(int)+sizeof(double)), ios::

beg);

temp.retrieve(inv);

cout << temp;

}

while(inv.good());

inv.close();

return 0;

}

REVIEW SKILLS CHECK: Chapter 10

1. #include <iostream >

using namespace std;

ostream &setsci(ostream &stream)

{

stream.setf(ios:: scientific | ios:: uppercase);

return stream;

}

int main()

{

double f = 123.23;

cout << setsci << f;

cout << ’\n’;

return 0;

}

2. // Copy and convert tabs to spaces.

#include <iostream >

545

TEACH YOURSELF
C++

#include <fstream >

using namespace std;

int main(int argc , char *argv [])

{

if(argc !=3)

{

cout << "Usage: CPY <int > <out >\n";

return 1;

}

ifstream in(argv [1]);

if(!in)

{

cout << "Cannot open input file.\n";

return 1;

}

ofstream out(argv [2]);

if(!out)

{

cout << "Cannot open output file.\n";

return 1;

}

char ch;

int i = 8;

while (!in.eof())

{

in.get(ch);

if(ch==’\t’)

for(; i>0; i--)

out.put(’ ’);

else

out.put(ch);

if(i == -1 || ch==’\n’)

i = 8;

i--;

}

in.close();

out.close();

return 0;

}

3. // Search file.

#include <iostream >

#include <fstream >

#include <cstring >

546

ANSWERS
10.2 EXERCISES

using namespace std;

int main(int argc , char *argv [])

{

if(argc !=3)

{

cout << "Usage: SEARCH <file > <word >\n";

return 1;

}

ifstream in(argv [1]);

if(!in)

{

cout << "Cannot open input file.\n";

return 1;

}

char str [255];

int count =0;

while (!in.eof())

{

in >> str;

if(! strcmp(str , argv [2]))

count ++;

}

cout << argv [2] << " found " << count;

cout << " number of times.\n";

in.close();

return 0;

}

4. The statement is

out.seekp (234, ios::beg);

5. The functions are rdstate(), good(), eof(), fail(), and bad().

6. The C++ I/O system can be customized to operate on classes that you create.

10.2 EXERCISES

1. #include <iostream >

using namespace std;

class num

{

public:

int i;

547

TEACH YOURSELF
C++

num(int x) { i = x; }

virtual void shownum () { cout << i << ’\n’; }

};

class outhex : public num

{

public:

outhex(int n) : num(n) {}

void shownum () { cout << hex << i << ’\n’; }

};

class outoct : public num

{

public:

outoct(int n) : num(n) {}

void shownum () { cout << oct << i << ’\n’; }

};

int main()

{

outoct o(10);

outhex h(20);

o.shownum ();

h.shownum ();

return 0;

}

2. #include <iostream >

using namespace std;

class dist

{

public:

double d;

dist(double f) { d = f; }

virtual void trav_time ()

{

cout << "Travel time at 60 mph: ";

cout << d / 60 << ’\n’;

}

};

class metric : public dist

{

public:

metric(double f) : dist(f) {}

void trav_time ()

{

cout << "Travel time at 100 kph: ";

548

ANSWERS
10.3 EXERCISES

cout << d / 100 << ’\n’;

}

};

int main()

{

dist *p, mph (88.0);

metric kph (88);

p = &mph;

p->trav_time ();

p = &kph;

p->trav_time ();

return 0;

}

10.3 EXERCISES

2. By definition, an abstract class contains at least one pure virtual function. This means
that no body for that function exists relative to that class. Thus, there is no way that an
object can be created because the class definition is not complete.

3. When func() is called relative to derived1, it is the func() inside base that is used.
The reason this works is that virtual functions are hierarchical.

10.4 EXERCISES

1. // Demonstrate virtual functions.

#include <iostream >

#include <cstdlib >

using namespace std;

class list

{

public:

list *head; // pointer to start of list

list *tail; // pointer to end of list

list *next; // pointer to next item

int num; // value to be stored

list() { head = tail = next = NULL; }

virtual void store(int i) = 0;

virtual int retrieve () = 0;

};

// Create a queue -type list.

class queue : public list

{

public:

549

TEACH YOURSELF
C++

void store(int i);

int retrieve ();

};

void queue:: store(int i)

{

list *item;

item = new queue;

if(!item)

{

cout << "Allocation error.\n";

exit (1);

}

item ->num = i;

// put on end of list

if(tail)

tail ->next = item;

tail = item;

item ->next = NULL;

if(!head)

head = tail;

}

int queue:: retrieve ()

{

int i;

list *p;

if(!head)

{

cout << "List empty.\n";

return 0;

}

// remove from start of list

i = head ->num;

p = head;

head = head ->next;

delete p;

return i;

}

// Create a stack -type list.

class stack : public list

{

public:

void store(int i);

int retrieve ();

550

ANSWERS
10.4 EXERCISES

};

void stack:: store(int i)

{

list *item;

item = new stack;

if(!item)

{

cout << "Allocation error.\n";

exit (1);

}

item ->num = i;

// put on front of list for stack -like operation

if(head)

item ->next = head;

head = item;

if(!tail)

tail = head;

}

int stack:: retrieve ()

{

int i;

list *p;

if(!head)

{

cout << "List empty.\n";

return 0;

}

// remove from start of list

i = head ->num;

p = head;

head = head ->next;

delete p;

return i;

}

// Create a sorted list.

class sorted : public list

{

public:

void store(int i);

int retrieve ();

};

void sorted :: store(int i)

551

TEACH YOURSELF
C++

{

list *item;

list *p, *p2;

item = new sorted;

if(!item)

{

cout << "Allocation error.\n";

exit (1);

}

item ->num = i;

// find where to put next item

p = head;

p2 = NULL;

while(p) // goes in middle

{

if(p->num > i)

{

item ->next = p;

if(p2)

p2->next = item; // not 1st element

if(p==head)

head = item; // new first element

break;

}

p2 = p;

p = p->next;

}

if(!p) // goes on end

{

if(tail)

tail ->next = item;

tail = item;

item ->next = NULL;

}

if(!head) // is first element

head = item;

}

int sorted :: retrieve ()

{

int i;

list *p;

if(!head)

{

cout << "List empty.\n";

return 0;

}

552

ANSWERS
10.4 EXERCISES

// remove from start of list

i = head ->num;

p = head;

head = head ->next;

delete p;

return i;

}

int main()

{

list *p;

// demonstrate queue

queue q_ob;

p = &q_ob; // point to queue

p->store (1);

p->store (2);

p->store (3);

cout << "Queue: ";

cout << p->retrieve ();

cout << p->retrieve ();

cout << p->retrieve ();

cout << ’\n’;

// demonstrate stack

stack s_ob;

p = &s_ob; // point to stack

p->store (1);

p->store (2);

p->store (3);

cout << "Stack: ";

cout << p->retrieve ();

cout << p->retrieve ();

cout << p->retrieve ();

cout << ’\n’;

// demonstrate sorted list

sorted sorted_ob;

p = &sorted_ob;

p->store (4);

p->store (1);

p->store (3);

p->store (9);

553

TEACH YOURSELF
C++

p->store (5);

cout << "Sorted: ";

cout << p->retrieve ();

cout << p->retrieve ();

cout << p->retrieve ();

cout << p->retrieve ();

cout << p->retrieve ();

cout << ’\n’;

return 0;

}

MASTERY SKILLS CHECK: Chapter 10

1. A virtual function is essentially a placeholder function that is declared in a base class and
that is redefined by a class derived from that base. The process of redefinition is called
overriding.

2. Nonmember functions and constructor functions cannot be made virtual.

3. A virtual function supports run-time polymorphism through the use of base class pointers.
When a base class pointer points to an object of a derived class containing a virtual
function, the specific function called is determined by the type of object being pointed to.

4. A pure virtual function is one that contains no definition relative to the base class.

5. An abstract class is a base class that contains at least one pure virtual function. A
polymorphic class is one that contains at least one virtual function.

6. The fragment is incorrect because the redefinition of a virtual function must have the
same return type and type and number of parameters as the original function. In this
case, the redefinition of f() differs in the number of its parameters.

7. Yes.

CUMULATIVE SKILLS CHECK: Chapter 10

1. // Demonstrate virtual functions.

#include <iostream >

#include <cstdlib >

using namespace std;

class list

{

public:

list *head; // pointer to start of list

list *tail; // pointer to end of list

list *next; // pointer to next item

int num; // value to be stored

554

ANSWERS
CUMULATIVE SKILLS CHECK: Chapter 10

list() { head = tail = next = NULL; }

virtual void store(int i) = 0;

virtual int retrieve () = 0;

};

// Create a queue -type list.

class queue : public list

{

public:

void store(int i);

int retrieve ();

queue operator +(int i) { store(i); return *this; }

int operator --(int unused) { return retrieve (); }

};

void queue:: store(int i)

{

list *item;

item = new queue;

if(!item)

{

cout << "Allocation error.\n";

exit (1);

}

item ->num = i;

// put on end of list

if(tail)

tail ->next = item;

tail = item;

item ->next = NULL;

if(!head)

head = tail;

}

int queue:: retrieve ()

{

int i;

list *p;

if(!head)

{

cout << "List empty.\n";

return 0;

}

// remove from start of list

i = head ->num;

p = head;

head = head ->next;

555

TEACH YOURSELF
C++

delete p;

return i;

}

// Create a stack -type list.

class stack : public list

{

public:

void store(int i);

int retrieve ();

stack operator +(int i) { store(i); return *this; }

int operator --(int unused) { return retrieve (); }

};

void stack:: store(int i)

{

list *item;

item = new stack;

if(!item)

{

cout << "Allocation error.\n";

exit (1);

}

item ->num = i;

// put on front of list for stack -like operation

if(head)

item ->next = head;

head = item;

if(!tail)

tail = head;

}

int stack:: retrieve ()

{

int i;

list *p;

if(!head)

{

cout << "List empty.\n";

return 0;

}

// remove from start of list

i = head ->num;

p = head;

head = head ->next;

delete p;

556

ANSWERS
REVIEW SKILLS CHECK: Chapter 11

return i;

}

int main()

{

// demonstrate queue

queue q_ob;

q_ob + 1;

q_ob + 2;

q_ob + 3;

cout << "Queue: ";

cout << q_ob --;

cout << q_ob --;

cout << q_ob --;

cout << ’\n’;

// demonstrate stack

stack s_ob;

s_ob + 1;

s_ob + 2;

s_ob + 3;

cout << "Stack: ";

cout << s_ob --;

cout << s_ob --;

cout << s_ob --;

cout << ’\n’;

return 0;

}

2. Virtual functions differ from overloaded functions in that overloaded functions must differ
from the number of parameters or the type of parameters. An overridden virtual function
must have exactly the same prototype (that is, the same return type and the same type
and number of parameters) as the original function.

REVIEW SKILLS CHECK: Chapter 11

1. A virtual function is a function that is declared as virtual by the base class and then
overridden by a derived class. A base class that contains at least one pure virtual function
is called an abstract class.

2. The missing words are ”virtual” and ”base”.

3. If a derived class does not override a non-pure virtual function, the derived class will use
the base class’s version of the virtual function.

557

TEACH YOURSELF
C++

4. The main advantage of run-time polymorphism is flexibility. The main disadvantage is
loss of execution speed.

11.1 EXERCISES

2. #include <iostream >

using namespace std;

template <class X> X min(X a, X b)

{

if(a<=b)

return a;

else

return b;

}

int main()

{

cout << min (12.2, 2.0);

cout << endl;

cout << min(3, 4);

cout << endl;

cout << min(’c’, ’a’);

return 0;

}

/*

This min(X, X) function might cause ambiguity

because of STL function min(const _Tp&, const _Tp&).

Try a different name.

*/

3. #include <iostream >

#include <cstring >

using namespace std;

template <class X> int find(X object , X *list , int size)

{

int i;

for(i=0; i<size; i++)

if(object == list[i])

return i;

return -1;

}

int main()

{

int a[] = {1, 2, 3, 4};

char *c = "this is a test";

558

ANSWERS
11.2 EXERCISES

double d[] = {1.1, 2.2, 3.3};

cout << find(3, a, 4);

cout << endl;

cout << find(’a’, c, (int) strlen(c));

cout << endl;

cout << find (0.0, d, 3);

return 0;

}

4. Generic functions are valuable because they allow you to define a general algorithm that
can be applied to various types of data. (That is, specific versions of the algorithm need
not be explicitly created by you.) Generic functions further help implement the concept
of ”one interface, multiple methods,” which is a common theme in C++ programming.

11.2 EXERCISES

2. // Create a generic queue.

#include <iostream >

using namespace std;

#define SIZE 100

template <class Qtype > class q_type

{

Qtype queue[SIZE]; // holds the queue

int head , tail; // indices of head and tail

public:

q_type () { head = tail = 0; }

void q(Qtype num); // store

Qtype deq(); // retrieve

};

// Put value on queue.

template <class Qtype > void q_type <Qtype >::q(Qtype num)

{

if(tail +1== head || (tail +1== SIZE && !head))

{

cout << "Queue is full.\n";

return;

}

tail ++;

if(tail==SIZE)

tail = 0; // cycle around

queue[tail] = num;

}

// Remove value from queue.

template <class Qtype > Qtype q_type <Qtype >::deq()

{

559

TEACH YOURSELF
C++

if(head == tail)

{

cout << "Queue is empty.\n";

return 0; // or some other error indicator

}

head ++;

if(head==SIZE)

head = 0; // cycle around

return queue[head];

}

int main()

{

q_type <int > q1;

q_type <char > q2;

int i;

for(i=1; i <=10; i++)

{

q1.q(i);

q2.q(i-1+’A’);

}

for(i=1; i <=10; i++)

{

cout << "Dequeue 1: " << q1.deq() << ’\n’;

cout << "Dequeue 2: " << q2.deq() << ’\n’;

}

return 0;

}

3. #include <iostream >

using namespace std;

template <class X> class input

{

X data;

public:

input(char *s, X min , X max);

// ...

};

template <class X>

input <X>:: input(char *s, X min , X max)

{

do

{

cout << s << ": ";

cin >> data;

}

560

ANSWERS
11.3 EXERCISES

while(data < min || data > max);

}

int main()

{

input <int > i("enter int", 0, 10);

input <char > c("enter char", ’A’, ’Z’);

return 0;

}

11.3 EXERCISES

2. The throw is called before execution passes through a try block.

3. A character exception is thrown, but the catch statement will handle only a character
pointer. (That is, there is no corresponding catch statement to handle the character
exception.)

4. If an exception is thrown for which there is no corresponding catch, terminate() is called
and abnormal program termination might occur.

11.4 EXERCISES

2. There is no corresponding catch statement for the throw.

3. One way to fix the problem is to create a catch(int) handler. Another way to fix it is to
catch all exceptions with a catch(...) handler.

4. catch(...) catches all exceptions.

5. #include <iostream >

#include <cstdlib >

using namespace std;

double divide(double a, double b)

{

try

{

if(!b)

throw(b);

}

catch(double)

{

cout << "Cannot divide by zero.\n";

exit (1);

}

return a/b;

}

int main()

{

561

TEACH YOURSELF
C++

cout << divide (10.0, 2.5) << endl;

cout << divide (10.0, 0.0);

return 0;

}

11.5 EXERCISES

1. By default, new throws an exception when an allocation error occurs. The nothrow
version of new returns a null pointer if memory cannot be allocated.

2. p = new(nothrow) int;

if(!p)

{

cout << "Allocation error.\n";

// ...

}

try

{

p = new int;

}

catch(bad_alloc ba)

{

cout << "Allocation error.\n";

// ...

}

MASTERY SKILLS CHECK: Chapter 11

1. #include <iostream >

#include <cstring >

using namespace std;

// A generic mode -fining function.

template <class X> X mode(X *data , int size)

{

register int t, w;

X md, oldmd;

int count , oldcount;

oldmd = 0;

oldcount = 0;

for(t=0; t<size; t++)

{

md = data[t];

count = 1;

for(w = t+1; w<size; w++)

{

562

ANSWERS
MASTERY SKILLS CHECK: Chapter 11

if(md==data[w])

count ++;

if(count > oldcount)

{

oldmd = md;

oldcount = count;

}

}

}

return oldmd;

}

int main()

{

int i[] = {1, 2, 3, 4, 2, 3, 2, 2, 1, 5};

char *p = "this is a test";

cout << "mode of i: " << mode(i, 10) << endl;

cout << "mode of p: " << mode(p, (int)strlen(p)) << endl;

return 0;

}

2. #include <iostream >

using namespace std;

template <class X> X sum(X *data , int size)

{

int i;

X result = 0;

for(i=0; i<size; i++)

result += data[i];

return result;

}

int main()

{

int i[] = {1, 2, 3, 4};

double d[] = {1.1, 2.2, 3.3, 4.4};

cout << sum(i, 4) << endl;

cout << sum(d, 4) << endl;

return 0;

}

3. #include <iostream >

using namespace std;

563

TEACH YOURSELF
C++

// A generic bubble sort.

template <class X> void bubble(X *data , int size)

{

register int a, b;

X t;

for(a=1; a<size; a++)

{

for(b=size -1; b>=a; b--)

{

if(data[b-1]>data[b])

{

t = data[b-1];

data[b-1] = data[b];

data[b] = t;

}

}

}

}

int main()

{

int i[] = {3, 2, 5, 6, 1, 8, 9, 3, 6, 9};

double d[] = {1.2, 5.5, 2.2, 3.3};

int j;

bubble(i, 10); // sort ints

bubble(d, 4); // sort doubles

for(j=0; j<10; j++)

cout << i[j] << ’ ’;

cout << endl;

for(j=0; j<4; j++)

cout << d[j] << ’ ’;

cout << endl;

return 0;

}

4. /*

This function demonstrates a generic stack that

holds two values.

*/

#include <iostream >

using namespace std;

#define SIZE 10

// Create a generic stack class

template <class StackType > class stack

564

ANSWERS
MASTERY SKILLS CHECK: Chapter 11

{

StackType stck[SIZE][2]; // holds the stack

int tos; // index of top of stack

public:

void init() { tos = 0; }

void push(StackType ob , StackType ob2);

StackType pop(StackType &ob2);

};

// Push objects.

template <class StackType >

void stack <StackType >:: push(StackType ob , StackType ob2)

{

if(tos==SIZE)

{

cout << "Stack is full.\n";

return;

}

stck[tos][0] = ob;

stck[tos][1] = ob2;

tos ++;

}

// Pop objects.

template <class StackType >

StackType stack <StackType >::pop(StackType &ob2)

{

if(tos ==0)

{

cout << "Stack is empty.\n";

return 0; // return null on empty stack

}

tos --;

ob2 = stck[tos][1];

return stck[tos][0];

}

int main()

{

// Demonstrate character stacks.

stack <char > s1 , s2; // create two stacks

int i;

char ch;

// initialize the stacks

s1.init();

s2.init();

s1.push(’a’, ’b’);

s2.push(’x’, ’z’);

s1.push(’b’, ’d’);

565

TEACH YOURSELF
C++

s2.push(’y’, ’e’);

s1.push(’c’, ’a’);

s2.push(’z’, ’x’);

for(i=0; i<3; i++)

{

cout << "Pop s1: " << s1.pop(ch);

cout << ’ ’ << ch << ’\n’;

}

for(i=0; i<3; i++)

{

cout << "Pop s2: " << s2.pop(ch);

cout << ’ ’ << ch << ’\n’;

}

// demonstrate double stacks

stack <double > ds1 , ds2; // create two stacks

double d;

// initialize the stacks

ds1.init();

ds2.init();

ds1.push (1.1, 2.0);

ds2.push (2.2, 3.0);

ds1.push (3.3, 4.0);

ds2.push (4.5, 5.0);

ds1.push (5.5, 6.0);

ds2.push (6.6, 7.0);

for(i=0; i<3; i++)

{

cout << "Pop ds1: " << ds1.pop(d);

cout << ’ ’ << d << ’\n’;

}

for(i=0; i<3; i++)

{

cout << "Pop ds2: " << ds2.pop(d);

cout << ’ ’ << d << ’\n’;

}

return 0;

}

5. The general forms of try, catch, and throw are shown here:

try

{

// try block

throw exp;

}

catch(type arg)

566

ANSWERS
MASTERY SKILLS CHECK: Chapter 11

{

// ...

}

6. /*

This function demonstrates a generic stack

that includes exception handling.

*/

#include <iostream >

using namespace std;

#define SIZE 10

// Create a generic stack class

template <class StackType > class stack

{

StackType stck[SIZE]; // holds the stack

int tos; // index of top of stack

public:

void init() { tos = 0; }

void push(StackType ob);

StackType pop();

};

// Push objects.

template <class StackType >

void stack <StackType >:: push(StackType ob)

{

try

{

if(tos==SIZE)

throw SIZE;

}

catch(int)

{

cout << "Stack is full.\n";

return;

}

stck[tos] = ob;

tos ++;

}

// Pop objects.

template <class StackType >

StackType stack <StackType >::pop()

{

try

{

if(tos ==0)

throw 0;

}

567

TEACH YOURSELF
C++

catch(int)

{

cout << "Stack is empty.\n";

return 0; // return null on empty stack

}

tos --;

return stck[tos];

}

int main()

{

// Demonstrate character stacks.

stack <char > s1 , s2; // create two stacks

int i;

char ch;

// initialize the stacks

s1.init();

s2.init();

s1.push(’a’);

s2.push(’x’);

s1.push(’b’);

s2.push(’y’);

s1.push(’c’);

s2.push(’z’);

for(i=0; i<3; i++)

cout << "Pop s1: " << s1.pop() << ’\n’;

for(i=0; i<3; i++)

cout << "Pop s2: " << s2.pop() << ’\n’;

// demonstrate double stacks

stack <double > ds1 , ds2; // create two stacks

double d;

// initialize the stacks

ds1.init();

ds2.init();

ds1.push (1.1);

ds2.push (2.2);

ds1.push (3.3);

ds2.push (4.5);

ds1.push (5.5);

ds2.push (6.6);

for(i=0; i<3; i++)

cout << "Pop ds1: " << ds1.pop() << ’\n’;

for(i=0; i<3; i++)

cout << "Pop ds2: " << ds2.pop() << ’\n’;

568

ANSWERS
REVIEW SKILLS CHECK: Chapter 12

return 0;

}

7. If new throws an exception when an allocation error occurs, you can be sure that the
error will be handled one way or another-even if only by abnormal program termination.
In contrast, an allocation failure that is reported by new, a return of a null pointer
can be overlooked if you forget to check for this possibility. The trouble is that when
your program attempts to use the null pointer, it might work for a while, then behave
erratically, and finally crash in unpredictable (and unduplicatable) ways. This is very
difficult type of bug to diagnose.

REVIEW SKILLS CHECK: Chapter 12

1. In C++, a generic function defines a general set of operations that will be applied to
various types of data. It is implemented with the keyword template. Its general form is
shown here:

template <class Ttype > ret_type func_name(para_list)

{

// ...

}

2. In C++, a generic class defines all operations that relate to that class, but the actual
data is specified as a parameter when an object of that class is created. Its general form
is shown here:

template <class Ttype > class class_name

{

// ...

};

3. #include <iostream >

using namespace std;

// Return a to the b.

template <class X> X gexp(X a, X b)

{

X i, result =1;

for(i=0; i<b; i++)

result *= a;

return result;

}

int main()

{

cout << gexp(2, 3) << endl;

cout << gexp (10.0, 2.0);

return 0;

}

569

TEACH YOURSELF
C++

4. #include <iostream >

#include <fstream >

using namespace std;

template <class CoordType > class coord

{

CoordType x, y;

public:

coord(CoordType i, CoordType j) { x = i; y = j; }

void show() { cout << x << ", " << y << endl; }

};

int main()

{

coord <int >o1(1, 2), o2(3, 4);

o1.show();

o2.show();

coord <double > o3(0.0, 0.23), o4(10.19 , 3.098);

o3.show();

o4.show();

return 0;

}

5. try, catch, and throw work together like this: Put all statements that you wish to
monitor for exceptions within a try block, if an exception occurs, throw that exception
using throw and handle it with a corresponding catch statement.

6. No.

7. terminate() is called when an exception is thrown for which there is no corresponding
catch statement. unexpected() is called when an attempt is made to throw an exception
out of a function that is not specified in the function’s throw clause.

8. catch(...).

12.1 EXERCISES

1. RTTI is necessary to C++ because it is not always possible to know at compile time what
type of object is being pointed to by a base class pointer of referenced by a base class
reference.

2. Here is the output produced when BaseClass is no longer a polymorphic class.

Typeid of i is int

p is pointing to an object of type class BaseClass

p is pointing to an object of type class BaseClass

p is pointing to an object of type class BaseClass

570

ANSWERS
12.2 EXERCISES

3. Yes.

4. if(typeid (*p) == typeid(D2)) ...

5. False. Although the same template class is used, the type of data used by each version is
different.

12.2 EXERCISES

1. The dynamic cast operator determines the validity of a polymorphic cast.

2. #include <iostream >

#include <typeinfo >

using namespace std;

class B

{

virtual void f() {}

};

class D1 : public B

{

void f() {}

};

class D2 : public B

{

void f() {}

};

int main()

{

B *p;

D2 ob;

p = dynamic_cast <D2 *> (&ob);

if(p)

cout << "Cast OK";

else

cout << "Cast Fails";

return 0;

}

3. int main()

{

int i;

Shape *p;

for(i=0; i<10; i++)

571

TEACH YOURSELF
C++

{

p = generator (); // get next object

cout << typeid (*p).name() << endl;

// draw object only if it is not a Nullshape

if(! dynamic_cast <NullShape *> (p))

p->example ();

}

return 0;

}

4. No. Bp and Dp are pointers to two fundamentally different types of objects.

12.3 EXERCISES

1. The new casting operators provide safer, more explicit ways to perform casts.

2. #include <iostream >

using namespace std;

void f(const double &i)

{

double &v = const_cast <double &> (i);

v = 100.0;

}

int main()

{

double x = 98.6;

cout << x << endl;

f(x);

cout << x << endl;

return 0;

}

3. Since const cast overrides the const specifier, it allows unexpected modifications to
objects.

MASTERY SKILLS CHECK: Chapter 12

1. The typeid operator returns a reference to an object of the class type info that contains
type information.

2. You must include <typeinfo> that contains type information.

3. The new casting operators are shown here:

572

ANSWERS
MASTERY SKILLS CHECK: Chapter 12

Operator Purpose

dynamic cast Performs a polymorphic cast
reinterpret cast Converts one type of pointer into another
static cast Performs a ”normal” cast
const cast Casts away const-ness

#include <iostream >

#include <typeinfo >

using namespace std;

class A

{

virtual void f() {}

};

class B : public A

{

};

class C : public B

{

};

int main()

{

A *p, a_ob;

B b_ob;

C c_ob;

int i;

cout << "Enter 0 for A objects , ";

cout << "1 for B objects or ";

cout << "2 for C objects .\n";

cin >> i;

if(i==1)

p = &b_ob;

else if(i==2)

p = &c_ob;

else

p = &a_ob;

if(typeid (*p) == typeid(A))

cout << "A object";

if(typeid (*p) == typeid(B))

cout << "B object";

if(typeid (*p) == typeid(C))

cout << "C object";

573

TEACH YOURSELF
C++

return 0;

}

4.5. The dynamic cast operator can replace typeid in situations in which typeid is being
used to determine the validity of a polymorphic cast.

6. The typeid operator returns a reference to a type info object.

CUMULATIVE SKILLS CHECK: Chapter 12

1. Here is a version of generator() that uses exception handling to check for an allocation
failure.

// Use exception handling to check for allocation failure.

Shape *generator ()

{

try

{

switch(rand() % 4)

{

case 0:

return new Line;

case 1:

return new Rectangle;

case 2:

return new Triangle;

case 3:

return new NullShape;

}

}

catch(bad_alloc ba)

{

return NULL;

}

return NULL;

}

2. Here is generator() recoded to use new(nothrow)

// Use new(nothrow)

Shape *generator ()

{

switch(rand() % 4)

{

case 0:

return new(nothrow) Line;

case 1:

return new(nothrow) Rectangle;

case 2:

574

ANSWERS
REVIEW SKILLS CHECK: Chapter 13

return new(nothrow) Triangle;

case 3:

return new(nothrow) NullShape;

}

if(temp)

return temp;

else

return NULL;

}

REVIEW SKILLS CHECK: Chapter 13

1. In addition to the C-like cast, the casting operators are

Operator Purpose

dynamic cast Performs a polymorphic cast
reinterpret cast Converts one type of pointer into another
static cast Performs a ”normal” cast
const cast Casts away const-ness

2. type info is a class that encapsulates information about a data type. A reference to a
type info object is returned by the typeid operator.

3. typeid.

4. if(typeid(Derived) == typeid (*p))

cout << "p points to derived object\n";

else

cout << "p points to a Base object\n";

5. The missing word is ”derived.”

6. No.

13.1 EXERCISES

1. /*

Convert spaces to \s without the

"using namespace std" statement.

*/

#include <iostream >

#include <fstream >

int main(int argc , char *argv [])

{

if(argc !=3)

{

std::cout << "Usage: CONVERT <input > <output >\n";

return 1;

}

575

TEACH YOURSELF
C++

std:: ifstream fin(argv [1]); // open input file

std:: ofstream fout(argv [2]); // create output file

if(!fout)

{

std::cout << "Cannot open output file.\n";

return 1;

}

if(!fin)

{

std::cout << "Cannot open input file.\n";

return 1;

}

char ch;

fin.unsetf(std::ios:: skipws); // do not skip spaces

while (!fin.eof())

{

fin >> ch;

if(ch==’ ’)

ch = ’|’;

if(!fin.eof())

fout << ch;

}

fin.close();

fout.close();

return 0;

}

2. A unnamed namespace restricts the scope of the identifiers declared within it to its file.

3. This form of using,

using name:: member;

brings only the specified member into the current namespace. The form

using namespace name;

brings the entire namespace into view.

4. Since the entire C++ standard library, including the streams cin and cout, is declared
within the std namespace, for convenience most programs have brought the std namespace
into view. This allows the standard library names to be used directly without qualification
by std::. For many programs, an alternative would be to simply qualify all references to
the standard library with std::0 Another alternative is to create using statements for
only std::cin or std::cout.

5. By putting library code into its own namespace you reduce the possibility of name conflicts.

576

ANSWERS
13.2 EXERCISES

13.2 EXERCISES

1. // Convert string type to integer.

#include <iostream >

#include <cstring >

using namespace std;

class strtype

{

char str [80];

int len;

public:

strtype(char *s) { strcpy(str , s); len = strlen(s); }

operator char *() { return str; }

operator int() { return len; }

};

int main()

{

strtype s("Conversion functions are convenient.");

char *p;

int l;

l = s; // convert s to integer - which is length of

string

p = s; // convert s to char * - which is pointer to

string

cout << "The string :\n";

cout << p << "\nis " << l << " chars long.\n";

return 0;

}

2. #include <iostream >

using namespace std;

int p(int base , int exp);

class pwr

{

int base;

int exp;

public:

pwr(int b, int e) { base = b; exp = e; }

operator int() { return p(base , exp); }

};

// Return base to the exp power.

int p(int base , int exp)

{

int temp;

577

TEACH YOURSELF
C++

for(temp =1; exp; exp --)

temp = temp * base;

return temp;

}

int main()

{

pwr o1(2, 3), o2(3, 3);

int result;

result = o1;

cout << result << ’\n’;

result = o2;

cout << result << ’\n’;

// can use directly in a cout statement like this:

cout << o1+100 << ’\n’;

return 0;

}

13.3 EXERCISES

1. // A shared resource example that traces output.

#include <iostream >

#include <cstring >

using namespace std;

class output

{

static char outbuf [255]; // this is the shared resource

static int inuse; // better available if 0;

static int oindex; // index of outbuf

char str [80];

int i; // index of next char in str

int who; // identifies the object , must be > 0

public:

output(int w, char *s) { strcpy(str , s); i = 0; who = w;

}

/*

This function returns -1 if waiting for buffer ,

it returns 0 if it is done outputting , and

it returns who if it is still using the buffer

*/

int putbuf ()

{

if(!str[i]) // done outputting

{

578

ANSWERS
13.3 EXERCISES

inuse = 0; // release buffer

return 0; // signal termination

}

if(! inuse)

inuse = who; // get buffer

if(inuse != who) // in use by someone else

{

cout << "Process " << who << " Currently blocked\

n";

return -1;

}

if(str[i]) // still chars to output

{

outbuf[oindex] = str[i];

cout << "Process " << who << " sending char\n";

i++;

oindex ++;

outbuf[oindex] = ’\0’; // always keep null -

terminated

return 1;

}

return 0;

}

void show() { cout << outbuf << ’\n’; }

};

char output :: outbuf [255]; // this is the shared resource

int output :: inuse = 0; // buffer available if 0

int output :: oindex = 0; // index of outbuf

int main()

{

output o1(1, "This is a test"), o2(2, " of statics");

while(o1.putbuf () | o2.putbuf ()); // output chars

o1.show();

return 0;

}

2. #include <iostream >

#include <new >

using namespace std;

class test

{

static int count;

public:

test() { count ++; }

~test() { count --; }

579

TEACH YOURSELF
C++

int getcount () { return count; }

};

int test:: count = 0;

int main()

{

test o1 , o2 , o3;

cout << o1.getcount () << " objects in existence\n";

test *p;

/*

Watch for allocation errors using both

old -style and new -style error handling.

*/

try

{

p = new test; // allocate an object

if(!p) // old -style

{

cout << "Allocation error\n"

return 1;

}

}

catch(bad_alloc ba) // new -style

{

cout << "Allocation error\n"

return 1;

}

cout << o1.getcount ();

cout << " objects in existence after allocation\n";

// delete object

delete p;

cout << o1.getcount ();

cout << " objects in existence after deletion\n";

return 0;

}

13.4 EXERCISES

1. To fix the program, simply make current mutable so that it can be modified by count-
ing(), which is a const member function. The solution is shown here:

#include <iostream >

using namespace std;

580

ANSWERS
13.5 EXERCISES

class CountDown

{

int incr;

int target;

mutable int current;

public:

CountDown(int delay , int i=1)

{

target = delay;

incr = i;

current = 0;

}

bool counting () const

{

current += incr;

if(current >= target)

{

cout << "\a";

return false;

}

cout << current << " ";

return true;

}

};

int main()

{

CountDown ob(100, 2);

while(ob.counting ());

return 0;

}

2. No. If it were possible for a const member function to call a non-const member function,
the non-const function could be used to modify the invoking object.

13.5 EXERCISES

1. Yes.

2. Yes, because C++ defines an automatic conversion from int to double.

3. One potential problem with implicit constructor conversions is that you might forget that
such a conversion is taking place. For example, an implicit conversion that takes place
in an assignment statement looks a lot like an overloaded assignment operator. However,
their actions are not necessarily the same. When you are creating classes that others will be
using, it might be wise to prevent implicit constructor conversions to avoid misconceptions
on the part of the users of your classes.

581

TEACH YOURSELF
C++

13.7 EXERCISES

1. /*

This version displays the number of chars

written to buf.

*/

#include <iostream >

#include <strstream >

using namespace std;

int main()

{

char buf [255];

ostrstream ostr(buf , sizeof buf);

ostr << "Array -based I/O uses streams just like";

ostr << "’normal ’ I/O\n" << 100;

ostr << ’ ’ << 123.23 << ’\n’;

// you can use manipulators , too

ostr << hex << 100 << ’ ’;

// or format flags

ostr.setf(ios:: scientific);

ostr << dec << 123.23;

ostr << endl << ends; // ensure that buffer is

// null -terminated

// show resultant string

cout << buf;

cout << ostr.pcount ();

return 0;

}

2. /*

Using array -based I/O to copy contents of one

array into another.

*/

#include <iostream >

#include <strstream >

using namespace std;

char inbuf[] = "This is a test of C++ array -based I/O";

char outbuf [255];

int main()

{

istrstream istr(inbuf);

ostrstream ostr(outbuf , sizeof outbuf);

582

ANSWERS
MASTERY SKILLS CHECK: Chapter 13

char ch;

while (!istr.eof())

{

istr.get(ch);

if(!istr.eof())

ostr.put(ch);

}

ostr.put(’\0’);

// null terminate

cout << "Input: " << inbuf << ’\n’;

cout << "Output: " << outbuf << ’\n’;

return 0;

}

3. // Convert string to float.

#include <iostream >

#include <strstream >

using namespace std;

int main()

{

float f;

char s[] = "1234.564"; // float represented as string

istrstream istr(s);

// Convert to internal representation the easy way;

istr >> f;

cout << "Converted form: " << f << ’\n’;

return 0;

}

MASTERY SKILLS CHECK: Chapter 13

1. Unlike a normal member variable, for which each object has its own copy, only one copy
of a static member variable exists, and it is shared by all objects of that class.

2. To use array-based I/O, include <strstream>.

3. No.

4. extern "C" int counter ();

5. A conversion function simply converts an object into a value compatible with another
type. Conversion functions are typically used to convert objects into values compatible
with the built-in data types.

583

TEACH YOURSELF
C++

6. The explicit keyword applies only to constructors. It prevents implicit constructor con-
versions.

7. A const member function cannot modify the object that invokes it.

8. A namespace, which is declared with the namespace keyword, defines a declarative
region.

9. The keyword mutable allows a const member function to modify a data member of its
class.

CUMULATIVE SKILLS CHECK: Chapter 13

1. Yes. In cases in which the implicit conversion performs the same action that would
be performed by an overloaded assignment operator for the type of the constructor’s
parameter, there is no need to overload the assignment operator.

2. Yes.

3. New libraries can be contained within their own namespaces, thus preventing name con-
flicts with other code. This benefit applies even to old code that is being updated with
new libraries.

REVIEW SKILLS CHECK: Chapter 14

1. Namespaces were added to C++ to localize identifier names in order to prevent name
collisions. The problem of name collisions was becoming sever because of the growth of
third-party class libraries.

2. To specify a member function as const, follow the function’s parameter list with the
keyword const. Here’s an example:

int f(int a) const;

3. False. mutable allows a member variable to be changed by a const member function.

4. class X

{

int a, b;

public:

X(int i, int j) { a = i, b = j; }

operator int() { return a+b; }

};

5. True.

6. No. The explicit specifier prevents the automatic conversion from int to Demo.

14.1 EXERCISES

1. A container is an object that holds other objects. An algorithm is a routine that acts
upon the contents of containers. An iterator is similar to a pointer.

2. Binary and unary.

3. The five types of iterators are random access, bidirectional, forward, input, and output.

584

ANSWERS
14.3 EXERCISES

14.3 EXERCISES

2. Any object stored in a vector must provide a default constructor.

3. // Store Coord objects in a vector.

#include <iostream >

#include <vector >

using namespace std;

class Coord

{

public:

int x, y;

Coord () { x = y = 0; }

Coord(int a, int b) { x = a; y = b; }

};

bool operator <(Coord a, Coord b)

{

return (a.x+a.y) < (b.x+b.y);

}

bool operator ==(Coord a, Coord b)

{

return (a.x+a.y) == (b.x+b.y);

}

int main()

{

vector <Coord > v;

int i;

for(i=0; i<10; i++)

v.push_back(Coord(i, i));

for(i=0; i<v.size(); i++)

cout << v[i].x << "," << v[i].y << " ";

cout << endl;

for(i=0; i<v.size(); i++)

v[i].x = v[i].x * 2;

for(i=0; i<v.size(); i++)

cout << v[i].x << "," << v[i].y << " ";

return 0;

}

14.4 EXERCISES

2. // List basics.

585

TEACH YOURSELF
C++

#include <iostream >

#include <list >

using namespace std;

int main()

{

list <char > lst; // create an empty list

int i;

for(i=0; i<10; i++)

lst.push_back(’A’+i);

cout << "Size = " << lst.size() << endl;

list <char >:: iterator p;

cout << "Contents: ";

for(i=0; i<lst.size(); i++)

{

p = lst.begin ();

cout << *p;

lst.pop_front ();

lst.push_back (*p); // put element on end of list

}

cout << endl;

if(!lst.empty())

cout << "List is not empty.\n";

return 0;

}

This program displays the following output.

Size = 10

Contents: ABCDEFGHIJ

List is not empty.

In this approach, elements are removed from the front but put on the back. Thus, the list
is not emptied. The loop that displays the list is controlled by obtaining the size of the
list using size().

3. // Merge two projects lists.

#include <iostream >

#include <list >

#include <cstring >

using namespace std;

class Project

{

public:

char name [40];

586

ANSWERS
14.4 EXERCISES

int days_to_completion;

Project ()

{

strcpy(name , "");

days_to_completion = 0;

}

Project(char *n, int d)

{

strcpy(name , n);

days_to_completion = d;

}

void add_days(int i)

{

days_to_completion += i;

}

void sub_days(int i)

{

days_to_completion -= i;

}

bool completed () { return !days_to_completion; }

void report ()

{

cout << name << ": ";

cout << days_to_completion;

cout << " days left.\n";

}

};

bool operator <(const Project &a, const Project &b)

{

return a.days_to_completion < b.days_to_completion;

}

bool operator >(const Project &a, const Project &b)

{

return a.days_to_completion > b.days_to_completion;

}

bool operator ==(const Project &a, const Project &b)

{

return a.days_to_completion == b.days_to_completion;

}

bool operator !=(const Project &a, const Project &b)

{

return a.days_to_completion != b.days_to_completion;

}

int main()

{

list <Project > proj;

587

TEACH YOURSELF
C++

list <Project > proj2;

proj.push_back(Project("Compiler", 35));

proj.push_back(Project("Spreadsheet", 190));

proj.push_back(Project("STL implementation", 1000));

proj2.push_back(Project("Database", 780));

proj2.push_back(Project("Mail Merge", 50));

proj.push_back(Project("COM Objects", 300));

proj.sort();

proj2.sort();

proj.merge(proj2); // merge projects

list <Project >:: iterator p = proj.begin();

/*

display projects

*/

while(p != proj.end())

{

p->report ();

p++;

}

return 0;

}

14.5 EXERCISES

2. // A map of names and phone numbers.

#include <iostream >

#include <map >

#include <cstring >

using namespace std;

class name

{

char str [20];

public:

name() { strcpy(str , ""); }

name(char *s) { strcpy(str , s); }

char *get() { return str; }

};

// must define less than relative to name objects

bool operator <(name a, name b)

{

return strcmp(a.get(), b.get()) < 0;

588

ANSWERS
14.6 EXERCISES

}

class phonenum

{

char str [20];

public:

phonenum () { strcpy(str , ""); }

phonenum(char *s) { strcpy(str , s); }

char *get() { return str; }

};

int main()

{

map <name , phonenum > m;

// put names and phone numbers into map

m.insert(pair <name ,

phonenum >(name("Joe"), phonenum("555 -4323")));

m.insert(pair <name ,

phonenum >(name("Tom"), phonenum("555 -9784")));

m.insert(pair <name ,

phonenum >(name("Larry"), phonenum("212 555 -9372")));

m.insert(pair <name ,

phonenum >(name("Tod"), phonenum("01 11 232 -4232")));

// given a name , find phone number

char str [80];

cout << "Enter name: ";

cin >> str;

map <name , phonenum >:: iterator p;

p = m.find(name(str));

if(p != m.end())

cout << "Phone Number: " << p->second.get();

else

cout << "Name not in map.\n";

return 0;

}

3. Yes.

14.6 EXERCISES

1. // Sort a vector using the sort algorithm.

#include <iostream >

#include <vector >

#include <cstdlib >

#include <algorithm >

using namespace std;

589

TEACH YOURSELF
C++

int main()

{

vector <char > v;

int i;

// create a vector of random characters

for(i=0; i<10; i++)

v.push_back(’A’ + (rand()%26));

cout << "Original contents: ";

for(i=0; i<v.size(); i++)

cout << v[i] << " ";

cout << endl << endl;

// sort the vector

sort(v.begin(), v.end());

cout << "Sorted contents: ";

for(i=0; i<v.size(); i++)

cout << v[i] << " ";

return 0;

}

2. // Merge two lists using the merge algorithm.

#include <iostream >

#include <list >

#include <algorithm >

using namespace std;

int main()

{

list <char > lst1 , lst2 , lst3 (20);

int i;

for(i=0; i<10; i+=2)

lst1.push_back(’A’+i);

for(i=1; i<11; i+=2)

lst2.push_back(’A’+i);

cout << "Contents of lst1: ";

list <char >:: iterator p = lst1.begin();

while(p != lst1.end())

{

cout << *p;

p++;

}

cout << endl << endl;

590

ANSWERS
14.7 EXERCISES

cout << "Contents of lst2: ";

p = lst2.begin ();

while(p != lst2.end())

{

cout << *p;

p++;

}

cout << endl << endl;

// now , merge the two lists

merge(lst1.begin (), lst1.end(),

lst2.begin(), lst2.end(),

lst3.begin());

cout << "Merged list:\n";

p = lst3.begin ();

while(p != lst3.end())

{

cout << *p;

p++;

}

return 0;

}

14.7 EXERCISES

1. #include <iostream >

#include <string >

#include <list >

using namespace std;

int main()

{

list <string > str;

str.push_back(string("one"));

str.push_back(string("two"));

str.push_back(string("three"));

str.push_back(string("four"));

str.push_back(string("five"));

str.push_back(string("six"));

str.push_back(string("seven"));

str.push_back(string("eight"));

str.push_back(string("nine"));

str.push_back(string("ten"));

str.sort(); // sort the list

list <string >:: iterator p = str.begin();

591

TEACH YOURSELF
C++

while(p != str.end())

{

cout << *p << " ";

p++;

}

return 0;

}

2. #include <iostream >

#include <string >

#include <algorithm >

using namespace std;

int main()

{

string str;

cout << "Enter a string: ";

cin >> str;

int i = count(str.begin(), str.end(), ’e’);

cout << i << " of them are e.\n";

return 0;

}

3. #include <iostream >

#include <algorithm >

#include <string >

using namespace std;

bool lower(char c)

{

return (c>=’a’ && c<=’z’);

}

int main ()

{

string str;

cout << "Enter a string: ";

cin >> str;

int i = count_if (str.begin(), str.end(), lower);

cout << i << " of them are lowercase .\n";

return 0;

}

4. string is a specialization of basic string.

592

ANSWERS
MASTERY SKILLS CHECK: Chapter 14

MASTERY SKILLS CHECK: Chapter 14

1. The STL provides off-the-shelf, debugged versions of many common data structures and
algorithms. Because: the STL classes are templatized, they can be used with any type of
data.

2. A container is an object that holds other objects. An iterator is similar to a pointer. An
algorithm acts on the contents of containers.

3. #include <iostream >

#include <vector >

#include <list >

using namespace std;

int main()

{

vector <int > v(10);

list <int > lst;

int i;

for(i=0; i<10; i++)

v[i] = i;

for(i=0; i<10; i++)

if(!(v[i]%2))

lst.push_back(v[i]);

list <int >:: iterator p = lst.begin();

while(p != lst.end())

{

cout << *p << ’ ’;

p++;

}

return 0;

}

4. The string type allows strings to be manipulated with operators. However, working with
string objects is not as efficient as working with null-terminated character arrays.

5. A predicate is a function that returns either true or false.

593

	Acknowledgments
	Introduction
	For Further Study
	An Overview of C++
	WHAT IS OBJECT-ORIENTED PROGRAMMING?
	TWO VERSIONS OF C++
	C++ CONSOLE I/O
	C++ COMMENTS
	CLASSES: A FIRST LOOK
	SOME DIFFERENCES BETWEEN C AND C++
	INTRODUCING FUNCTION OVERLOADING
	C++ KEYWORDS
	SKILLS CHECK

	Introducing Classes
	CONSTRUCTOR AND DESTRUCTOR FUNCTIONS
	CONSTRUCTORS THAT TAKE PARAMETERS
	INTRODUCING INHERITANCE
	OBJECT POINTERS
	CLASSES, STRUCTURES, AND UNIONS ARE RELATED
	IN-LINE FUNCTIONS
	AUTOMATIC IN-LINING
	SKILLS CHECK

	A Closer Look at Classes
	ASSIGNING OBJECTS
	PASSING OBJECTS TO FUNCTIONS
	RETURNING OBJECTS FROM FUNCTIONS
	AN INTRODUCTION TO FRIEND FUNCTIONS
	SKILLS CHECK

	Arrays, Pointers, and References
	ARRAYS OF OBJECTS
	USING POINTERS TO OBJECTS
	THE this POINTER
	USING new AND delete
	MORE ABOUT new AND delete
	REFERENCES
	PASSING REFERENCES TO OBJECTS
	RETURNING REFERENCES
	INDEPENDENT REFERENCES AND RESTRICTIONS
	SKILLS CHECK

	Function Overloading
	OVERLOADING CONSTRUCTOR FUNCTIONS
	CREATING AND USING A COPY CONSTRUCTOR
	THE OVERLOAD ANACHRONISM
	USING DEFAULT ARGUMENTS
	OVERLOADING AND AMBIGUITY
	FINDING THE ADDRESS OF AN OVERLOADED FUNCTION
	SKILLS CHECK

	Introducing Operator Overloading
	THE BASICS OF OPERATOR OVERLOADING
	OVERLOADING BINARY OPERATORS
	OVERLOADING THE RELATIONAL AND LOGICAL OPERATORS
	OVERLOADING A UNARY OPERATOR
	USING FRIEND OPERATOR FUNCTIONS
	A CLOSER LOOK AT THE ASSIGNMENT OPERATOR
	OVERLOADING THE [] SUBSCRIPT OPERATOR
	SKILLS CHECK

	Inheritance
	BASE CLASS ACCESS CONTROL
	USING PROTECTED MEMBERS
	CONSTRUCTORS, DESTRUCTORS, AND INHERITANCE
	MULTIPLE INHERITANCE
	VIRTUAL BASE CLASSES
	SKILLS CHECK

	Introducing the C++ I/O System
	SOME C++ I/O BASICS
	FORMATTED I/O
	USING width(), precision(), AND fill()
	USING I/O MANIPULATORS
	CREATING YOUR OWN INSERTERS
	CREATING EXTRACTORS
	SKILLS CHECK

	Advanced C++ I/O
	CREATING YOUR OWN MANIPULATORS
	FILE I/O BASICS
	UNFORMATTED, BINARY I/O
	MORE UNFORMATTED I/O FUNCTIONS
	RANDOM ACCESS
	CHECKING THE I/O STATUS
	CUSTOMIZED I/O AND FILES
	SKILLS CHECK

	Virtual Functions
	POINTERS TO DERIVED CLASSES
	INTRODUCTION TO VIRTUAL FUNCTIONS
	MORE ABOUT VIRTUAL FUNCTIONS
	APPLYING POLYMORPHISM
	SKILLS CHECK

	Templates and Exception Handling
	GENERIC FUNCTIONS
	GENERIC CLASSES
	EXCEPTION HANDLING
	MORE ABOUT EXCEPTION HANDLING
	HANDLING EXCEPTIONS THROWN BY new
	SKILLS CHECK

	Run-Time Type Identification and the Casting Operators
	UNDERSTANDING RUN-TIME TYPE IDENTIFICATION (RTTI)
	USING dynamic_cast
	USING const_cast, reinterpret_cast, AND static_cast
	SKILLS CHECK

	Namespaces, Conversion Functions, and Miscellaneous Topics
	NAMESPACES
	CREATING A CONVERSION FUNCTION
	STATIC CLASS MEMBERS
	const MEMBER FUNCTIONS AND mutable
	A FINAL LOOK AT CONSTRUCTORS
	USING LINKAGE SPECIFIERS AND THE asm KEYWORD
	ARRAY-BASED I/O
	SKILLS CHECK

	Introducing the Standard Template Library
	AN OVERVIEW OF THE STANDARD TEMPLATE LIBRARY
	THE CONTAINER CLASSES
	VECTORS
	LISTS
	MAPS
	ALGORITHMS
	THE STRING CLASS
	SKILLS CHECK

	A Few More Differences Between C and C++
	Answers
	1.3 EXERCISES
	1.4 EXERCISES
	1.5 EXERCISES
	1.6 EXERCISES
	1.7 EXERCISES
	MASTERY SKILLS CHECK: Chapter 1
	REVIEW SKILLS CHECK: Chapter 2
	2.1 EXERCISES
	2.2 EXERCISES
	2.3 EXERCISE
	2.5 EXERCISES
	2.6 EXERCISES
	2.7 EXERCISES
	MASTERY SKILLS CHECK: Chapter 2
	CUMULATIVE SKILLS CHECK: Chapter 2
	REVIEW SKILLS CHECK: Chapter 3
	3.1 EXERCISES
	3.2 EXERCISES
	3.3 EXERCISES
	3.4 EXERCISES
	MASTERY SKILLS CHECK: Chapter 3
	CUMULATIVE SKILLS CHECK: Chapter 3
	REVIEW SKILLS CHECK: Chapter 4
	4.1 EXERCISES
	4.2 EXERCISES
	4.3 EXERCISE
	4.4 EXERCISES
	4.5 EXERCISES
	4.6 EXERCISES
	4.7 EXERCISE
	4.8 EXERCISES
	MASTERY SKILLS CHECK: Chapter 4
	CUMULATIVE SKILLS CHECK: Chapter 4
	REVIEW SKILLS CHECK: Chapter 5
	5.1 EXERCISES
	5.2 EXERCISES
	5.4 EXERCISES
	5.6 EXERCISE
	MASTERY SKILLS CHECK: Chapter 5
	CUMULATIVE SKILLS CHECK: Chapter 5
	REVIEW SKILLS CHECK: Chapter 6
	6.2 EXERCISES
	6.3 EXERCISE
	6.4 EXERCISES
	6.5 EXERCISES
	6.6 EXERCISE
	6.7 EXERCISES
	MASTERY SKILLS CHECK: Chapter 6
	CUMULATIVE SKILLS CHECK: Chapter 6
	REVIEW SKILLS CHECK: Chapter 7
	7.1 EXERCISES
	7.2 EXERCISES
	7.3 EXERCISES
	7.4 EXERCISES
	7.5 EXERCISES
	MASTERY SKILLS CHECK: Chapter 7
	CUMULATIVE SKILLS CHECK: Chapter 7
	REVIEW SKILLS CHECK: Chapter 8
	8.2 EXERCISES
	8.3 EXERCISES
	8.5 EXERCISES
	8.6 EXERCISES
	MASTERY SKILLS CHECK: Chapter 8
	CUMULATIVE SKILLS CHECK: Chapter 8
	REVIEW SKILLS CHECK: Chapter 9
	9.1 EXERCISES
	9.2 EXERCISES
	9.3 EXERCISES
	9.4 EXERCISES
	9.5 EXERCISES
	9.6 EXERCISES
	MASTERY SKILLS CHECK: Chapter 9
	CUMULATIVE SKILLS CHECK: Chapter 9
	REVIEW SKILLS CHECK: Chapter 10
	10.2 EXERCISES
	10.3 EXERCISES
	10.4 EXERCISES
	MASTERY SKILLS CHECK: Chapter 10
	CUMULATIVE SKILLS CHECK: Chapter 10
	REVIEW SKILLS CHECK: Chapter 11
	11.1 EXERCISES
	11.2 EXERCISES
	11.3 EXERCISES
	11.4 EXERCISES
	11.5 EXERCISES
	MASTERY SKILLS CHECK: Chapter 11
	REVIEW SKILLS CHECK: Chapter 12
	12.1 EXERCISES
	12.2 EXERCISES
	12.3 EXERCISES
	MASTERY SKILLS CHECK: Chapter 12
	CUMULATIVE SKILLS CHECK: Chapter 12
	REVIEW SKILLS CHECK: Chapter 13
	13.1 EXERCISES
	13.2 EXERCISES
	13.3 EXERCISES
	13.4 EXERCISES
	13.5 EXERCISES
	13.7 EXERCISES
	MASTERY SKILLS CHECK: Chapter 13
	CUMULATIVE SKILLS CHECK: Chapter 13
	REVIEW SKILLS CHECK: Chapter 14
	14.1 EXERCISES
	14.3 EXERCISES
	14.4 EXERCISES
	14.5 EXERCISES
	14.6 EXERCISES
	14.7 EXERCISES
	MASTERY SKILLS CHECK: Chapter 14

